Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Nho Quan Ninh Bình

Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Nho Quan Ninh Bình Bản PDF - Nội dung bài viết Đề Học Sinh Giỏi Huyện Lớp 8 Môn Toán Năm 2014-2015 Đề Học Sinh Giỏi Huyện Lớp 8 Môn Toán Năm 2014-2015 Xin chào đến với đề thi học sinh giỏi môn Toán lớp 8 năm 2014-2015 của phòng GD&ĐT Nho Quan, Ninh Bình. Đề thi này bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trong đề thi: Cho abc là các số hữu tỷ thỏa mãn điều kiện ab⋅bc⋅ca = 1. Chứng minh rằng biểu thức 2√a + √b + c là bình phương của một số hữu tỷ. Cho các số nguyên abc thoả mãn a^3 + b^3 + c^3 - 2abc = 10. Tính giá trị của biểu thức (ab + bc + ca)^2. Cho tam giác ABC, M là một điểm thuộc cạnh BC sao cho BM = MC. Qua M kẻ các đường thẳng song song với AC và AB, chúng cắt AB và AC lần lượt tại D và E. a) Chứng minh tứ giác ADME là hình bình hành. Xác định vị trí của điểm M trên cạnh BC để hình bình hành ADME là hình thoi. b) Chứng minh rằng BD = EC = DM = ME. c) Cho 2 tam giác BDM và CME có diện tích lần lượt là 9cm² và 16cm². Tính diện tích tam giác ABC. d) Chứng minh rằng AM = BC, AC = BM, AB = CM. Hy vọng rằng đề thi này sẽ giúp các em học sinh rèn luyện và nâng cao kiến thức của mình. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi huyện Toán 8 năm 2018 - 2019 phòng GDĐT Ninh Phước - Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi huyện Toán 8 năm học 2018 – 2019 phòng GD&ĐT huyện Ninh Phước, tỉnh Ninh Thuận; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi học sinh giỏi huyện Toán 8 năm 2018 – 2019 phòng GD&ĐT Ninh Phước – Ninh Thuận : + Cho biểu thức A = (x – 1)(x + 2)(x + 3)(x + 6). Tìm giá trị của x để biểu thức A đạt giá trị nhỏ nhất. + Cho hình bình hành ABCD có DC = 2AD, từ trung điểm I của cạnh CD vẽ HI vuông góc với AB (H thuộc AB). Gọi E là giao điểm của AI và DH. Chứng minh rằng. + Cho tam giác ABC vuông tại A có AD là phân giác,biết BD = 14 3 17 cm, CD = 3 9 17 cm. Tính độ dài các cạnh góc vuông của tam giác.
Đề thi HSG Toán 8 năm 2018 - 2019 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Tuyển tập 100 đề thi học sinh giỏi môn Toán 8 - Hồ Khắc Vũ
Tài liệu gồm 89 trang tuyển tập 100 đề thi chọn học sinh giỏi môn Toán lớp 8 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi học sinh giỏi môn Toán 8 trường THCS Bãi Sậy - Hưng Yên
Đề thi học sinh giỏi môn Toán 8 trường THCS Bãi Sậy – Hưng Yên gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 60 phút. Trích dẫn đề thi : + Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm D, kẻ DN vuông góc với AC và DM vuông góc AB. Kẻ đường cao AH của tam giác ABC. a. Tứ giác AMDN là hình gì? Vì sao? b. Tìm vị trí điểm D trên cạnh BC thì MN có độ dài nhỏ nhất? Vẽ hình đúng với vị trí của điểm D đó? c. Tính số đo góc MHN? [ads] + Chứng minh rằng biểu thức (x – 1 )(2x^2 + x + 1) – ( x – 2)(2x^2 + 3x + 6) có giá trị không phụ thuộc vào các biến? + Tìm các giá trị x; y nguyên dương sao cho 9xy + 3x + 3y = 51 + Tìm giá trị nhỏ nhất của đa thức N = x^2 + 5y^2 – 4xy + 6x – 14y + 15