Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018

Tài liệu gồm 414 trang tổng hợp các câu hỏi và bài toán trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018, các câu hỏi và bài tập được phân loại theo 4 mức độ nhận thức, được phân tích và giải chi tiết. Trích dẫn tài liệu trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018 : + (THPT Quỳnh Lưu 1 – Nghệ An – Lần 2 năm 2017 – 2018) Thể tích V của khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi đường tròn (C): x^2 + (y – 3)^2 = 1 xung quanh trục hoành là? + (THPT Chuyên Hạ Long – Quảng Ninh lần 2 năm 2017 – 2018) Cho hình phẳng (H) giới hạn bởi đồ thị của hai hàm số f1(x) và f2(x) liên tục trên đoạn [a; b] và hai đường thẳng x = a, x = b (tham khảo hình vẽ dưới). Công thức tính diện tích của hình (H) là? [ads] + (THPT Mộ Đức-Quảng Ngãi – lần 1 năm 2017 – 2018) Trong hệ trục tọa độ Oxy, cho parabol (P): y = x^2 và hai đường thẳng y = a, y = b (0 < a < b) (hình vẽ). Gọi S1 là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y = a (phần tô đen); S2 là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y = b (phần gạch chéo). Với điều kiện nào sau đây của a và b thì S1 = S2?

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm phương pháp vi phân tìm nguyên hàm
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương pháp vi phân tìm nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. Vi phân của hàm số. II. Một số công thức vi phân quan trọng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm mở đầu về nguyên hàm
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề mở đầu về nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. LÝ THUYẾT TRỌNG TÂM. 1. Vi phân của hàm số. 2. Nguyên hàm. a. Định nghĩa. b. Định lý. c. Tính chất của nguyên hàm. d. Bảng công thức nguyên hàm. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
203 bài tập nguyên hàm - tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán
Tài liệu gồm 126 trang, được tổng hợp bởi thầy giáo Lương Anh Nhật, tuyển tập 203 bài tập nguyên hàm – tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn tài liệu 203 bài tập nguyên hàm – tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán: + THPT CHUYÊN LAM SƠN – THANH HÓA NĂM 2020 – 2021 LẦN 01: Cho hàm số f(x) xác định trên R, thỏa mãn f x x 2 1 và f 3 5. Giả sử phương trình f x 999 có hai nghiệm 1 x và 2 x. Tính tổng 1 2 S x x log log. + CHUYÊN QUANG TRUNG – BÌNH PHƯỚC NĂM 2020 – 2021 LẦN 02: Cho parabol 2 1P 6 y x cắt trục hoành tại hai điểm phân biệt AB và đường thẳng d y a 0 6 a. Xét parabol P2 đi qua AB và có đỉnh thuộc đường thẳng y a. Gọi 1 S là diện tích hình phẳng giới hạn bởi P1 và d; 2S là diện tích hình phẳng giới hạn bởi P2 và trục hoành (tham khảo hình vẽ). + CHUYÊN NGUYỄN DU – ĐĂKLẮK NĂM 2020 – 2021: Cho một viên gạch men có dạng hình vuông OABC như hình vẽ. Sau khi tọa độ hóa, ta có O A B C và hai đường cong lần lượt là đồ thị hàm số 3 y x và 3 y x. Tính diện tích phần tô đậm trên viên gạch men.
Toàn cảnh nguyên hàm - tích phân và ứng dụng trong đề thi THPT môn Toán (2017 - 2020)
Tài liệu gồm 22 trang, tuyển chọn 159 câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm – tích phân và ứng dụng có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3 (nguyên hàm – tích phân và ứng dụng) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Xem thêm : Đề thi THPT Quốc gia môn Toán từ năm 2017 đến năm 2020