Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán tuyển sinh lớp 10 đợt 2 năm 2019 trường Thăng Long - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối lớp 9 nội dung đề thi thử Toán tuyển sinh vào lớp 10 đợt 2 năm 2019 trường THPT Thăng Long – Hà Nội, kỳ thi được diễn ra vào Chủ Nhật ngày 21 tháng 04 năm 2019, đề thi gồm 01 trang với 05 bài toán dạng tự luận, học sinh làm bài trong 120 phút (không kể thời giam giáo viên coi thi phát đề). Trích dẫn đề thi thử Toán tuyển sinh lớp 10 đợt 2 năm 2019 trường Thăng Long – Hà Nội : + Hai người thợ làm chung một công việc với năng suất đã định và dự kiến sẽ xong trong 10 ngày. Họ làm chung với nhau được 8 ngày thì người thứ nhất được điều động đi làm công việc khác, người thứ hai tiếp tục làm đến khi hoàn thành công việc. Từ khi bắt đầu làm công việc một mình, do cải tiến kỹ thuật nên năng suất tăng gấp đôi vì vậy người thứ hai đã làm xong phần việc còn lại trong 3,5 ngày. Hỏi nếu mỗi người làm một mình thì sau bao nhiêu ngày sẽ hoàn thành công việc với năng suất đã định ban đầu. [ads] + Cho biểu thức A và B với x > 0. 1) Tính giá trị của biểu thức B khi x = 9. 2) Đặt P = A.B, rút gọn biểu thức P và so sánh P với 1. 3) Tìm x thuộc R để P có giá trị là số nguyên. + Cho điểm A nằm ngoài đường tròn (O;R). Vẽ các tiếp tuyến AB, AC với đường tròn (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC, điểm M thuộc dây cung BC, đường thẳng AM cắt đường tròn (O) tại D và E (D nằm giữa A và M), điểm N là trung điểm của dây cung DE. 1) Chứng minh năm điểm A, B, C, O và N cùng thuộc một đường tròn. 2) Chứng minh BOD =2.ANC và tam giác AMH đồng dạng với tam giác AON. 3) Chứng minh AB^2 = AD.AE và tứ giác DHOE là tứ giác nội tiếp. 4) Khi M di chuyển trên dây cung BC, xác định vị trí của điểm M để tổng 1/√AD + 1/√AE lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT TP HCM
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán chuyên năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT TP HCM gồm 01 trang với 06 bài toán, thời gian làm bài 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT TP HCM : + Tìm tất cả các số nguyên dương x, y thỏa mãn phương trình 3^x – y^3 = 1. + Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh AB, BC, CA lần lượt tại D, E, F. Kẻ đường kính EJ của đường tròn (I). Gọi d là đường thẳng qua A song song với BC. Đường thẳng JD cắt d, BC lần lượt tại L, H. a) Chứng minh: E, F, L thẳng hàng. b) JA, JF cắt BC lần lượt tại M, K. Chứng minh: MH vuông góc MK. [ads] + Cho tam giác nhọn ABC (AB < BC < CA) nội tiếp đường tròn (O). Từ A kẻ đường thẳng song song với BC cắt (O) tại A1. Từ B kẻ đường thẳng song song với AC cắt (O) tại B1. Từ C kẻ đường thẳng song song với AB cắt (O) tại C1. Chứng minh rằng các đường thẳng qua A1, B1, C1 lần lượt vuông góc với BC, CA, AB đồng quy.
Đề tuyển sinh vào 10 môn Toán chuyên năm 2020 - 2021 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 24 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh vào 10 môn Toán cơ sở năm 2020 - 2021 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán cơ sở năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 23 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Thanh Hóa
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thanh Hóa gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = ax + b. Tìm a, b để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 2 và đi qua điểm M(2;3). [ads] + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao BD, CE (D thuộc AC, E thuộc AB) của tam giác kéo dài lần lượt cắt đường tròn (O) tại các điểm M và N (M khác B, N khác C). 1. Chứng minh tứ giác BCDE nội tiếp được trong một đường tròn. 2. Chứng minh MN song song với DE. 3. Khi đường tròn (O) và dây BC cố định, điểm A di động trên cùng lớn BC sao cho tam giác ABC nhọn, chứng minh bán kính đường tròn ngoại tiếp tam giác ADE không đổi và tìm vị trí của điểm A để diện tích tam giác ADE đạt giá trị lớn nhất. + Cho ba số thực dương x, y, z thỏa mãn điều kiện x + y + z = xyz. Tìm giá trị nhỏ nhất của biểu thức: Q = (y + 2)/x^2 + (z + 2)/y^2 + (x + 2)/z^2.