Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG Toán 7 năm 2022 - 2023 trường THCS Cành Nàng - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chọn đội tuyển học sinh giỏi môn Toán 7 năm học 2022 – 2023 trường THCS thị trấn Cành Nàng, huyện Bá Thước, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát HSG Toán 7 năm 2022 – 2023 trường THCS Cành Nàng – Thanh Hóa : + Số A được chia thành 3 số tỉ lệ theo 231 546. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH BC (H BC). Biết HBE = 50o; MEB = 25o. Tính số đo HEM và BME. + Chứng minh rằng nếu 2n + 1 và 3n + 1 (với n N) đều là các số chính phương thì n chia hết cho 40.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG huyện Toán 7 năm 2020 - 2021 phòng GDĐT Hà Trung - Thanh Hóa
Thứ Sáu ngày 09 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 7 cấp huyện năm học 2020 – 2021. Đề thi HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa : + Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F. Chứng minh rằng: a) AE = AF. b) BE = CF. c) 2 AB AC AE. 2) Cho A nằm trong góc xOy nhọn. Tìm điểm B,C lần lượt thuộc Ox, Oy sao cho tam giác ABC có chu vi nhỏ nhất. + Tìm các số x, y, z nguyên dương thỏa mãn: x + y + z = xyz.
Đề thi HSG Toán 7 năm 2020 - 2021 trường THCS Trung Nguyên - Vĩnh Phúc
Thứ Ba ngày 30 tháng 03 năm 2021, trường THCS Trung Nguyên, huyện Yên Lạc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2020 – 2021. Đề thi HSG Toán 7 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 7 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc : + Cho góc xOy bằng 600. Tia Oz là phân giác của góc xOy. Từ điểm B bất kì trên tia Ox kẻ BH, BK lần lượt vuông góc với Oy, Oz tại H và K. Qua B kẻ đường song song với Oy cắt Oz tại M. Chứng minh rằng BH = MK. + Cho tam giác ABC vuông cân tại A. Điểm M nằm bên trong tam giác sao cho MA = 2cm, MB = 3cm và 0 AMC 135. Tính MC. + Từ 200 số tự nhiên 1; 2; 3;…; 200, ta lấy ra k số bất kì sao cho trong các số vừa lấy luôn tìm được 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k.
Đề thi HSG Toán 7 năm 2020 - 2021 phòng GDĐT thành phố Bắc Giang
Ngày 12 tháng 03 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp thành phố môn Toán lớp 7 năm học 2020 – 2021. Đề thi HSG Toán 7 năm 2020 – 2021 phòng GD&ĐT thành phố Bắc Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.
Đề thi HSG huyện Toán 7 năm 2020 - 2021 phòng GDĐT Lục Ngạn - Bắc Giang
Thứ Năm ngày 18 tháng 03 năm 2021, phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2020 – 2021. Đề thi HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Lục Ngạn – Bắc Giang (bảng B) gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian làm bài 120 phút.