Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Cà Mau

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2021 – 2022 sở GD&ĐT Cà Mau; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2021. Trích dẫn đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Cà Mau : + Tất cả học sinh lớp 9 của Trường trung học cơ sở Tân Tiến tham gia xếp hàng để đồng diễn thể dục; mỗi hàng đươc xếp không quá 25 học sinh. Nếu xếp mỗi hàng 16 học sinh thì còn thừa một học sinh; nếu bớt đi một hàng thì có thể chia đều tất cả các học sinh vào các hàng còn lại sao cho số học sinh ở mỗi hàng là bằng nhau. Hỏi Trường trung học cơ sở Tân Tiến có bao nhiêu ho5c sinh lớp 9? + Ngày 31/5/2021, Ủy ban Bầu cử của tỉnh A đã ban hành Nghị quyết công bố 51 đại biểu là nam và nữ trúng cử Hội đồng nhân dân tỉnh khóa X, nhiệm kỳ 2021-2026. Người ta thống kê được rằng: tuổi trung bình của các đại biểu nam trúng cử là 1612 33 tuổi; tuổi trung bình của các đại biểu nữ trúng cử là 413 9 tuổi và tuổi trung bình của 51 đại biểu trúng cử là 2438 51 tuổi. Tính số đại biểu trúng cử là nam; số đại biểu trúng cử là nữ của tỉnh A. + Cho tam giác ABC có ba góc nhọn. Các đường cao AM, BN, CP cắt nhau tại H. Gọi I là điểm đối xứng của H qua BC. a) Chứng minh tứ giác ABIC nội tiếp được đường tròn (O). b) Gọi K là trung điểm của AB, chứng minh NK là tiếp tuyến của đường tròn ngoại tiếp của tam giác NHC. c) Biết BN cắt đường tròn (O) tại điểm thứ hai là E và CP cắt đường tròn (O) tại điểm thứ hai là F. Tính giá trị biểu thức AI BE CF G AM BN CP.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2023 - 2024 sở GD ĐT TP Hồ Chí Minh Đề tuyển sinh môn Toán năm 2023 - 2024 sở GD ĐT TP Hồ Chí Minh Chúng tôi trân trọng giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 - 2024 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào ngày 07 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GD&ĐT TP Hồ Chí Minh: 1. Cửa hàng A bán hồng với giá 15,000 đồng/bông. Nếu khách hàng mua hơn 10 bông, từ bông thứ 11 trở đi, mỗi bông sẽ được giảm giá 10%. Nếu mua hơn 20 bông, từ bông thứ 21 trở đi, mỗi bông sẽ được giảm thêm 20% trên giá đã giảm. Hỏi nếu khách hàng mua 30 bông hồng thì phải trả bao nhiêu tiền? 2. Bạn Thảo đã mua hồng tại cửa hàng A với số tiền 555,000 đồng. Hỏi bạn Thảo đã mua bao nhiêu bông hồng? 3. Chị Lan sử dụng ấm điện để đun sôi nước. Công suất hao phí P(W) của ấm điện và thời gian đun t (giây) được mô hình hóa bởi hàm số P = at + b. Hãy xác định các hệ số a và b. Nếu công suất hao phí là 105W, thời gian đun sẽ là bao lâu? 4. Bạn Nam cần chuẩn bị hộp nước trái cây có lượng nước 1,2 lít cho 14 người. Nếu mỗi người uống trung bình 3 ly nước trái cây và lượng nước rót bằng 90% thể tích ly, hỏi Nam cần chuẩn bị ít nhất bao nhiêu hộp nước trái cây? Hãy sẵn sàng để tham gia kỳ thi và chúc các em đạt kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bình Phước
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bình Phước Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bình Phước Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bình Phước Chào các thầy cô giáo và các em học sinh, Sytu xin giới thiệu đến quý vị đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Bình Phước. Kỳ thi sẽ diễn ra vào ngày 07/06/2023. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 của sở GD&ĐT Bình Phước có một số câu hỏi thú vị như sau: 1. Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng (p – 1)(p + 1) chia hết cho 24. 2. Trong hệ trục tọa độ Oxy, với đoạn thẳng AB và điểm C nằm trên đoạn AB sao cho BC > AC. Câu hỏi đặt ra là phải chứng minh một số tính chất của tứ giác BMKE và tam giác BNE, với việc vẽ nửa đường tròn và kết hợp các thông tin về điểm M, K, N, P. 3. Phần cuối cùng của đề bài đề cập đến việc điền các số tự nhiên liên tiếp vào bảng có 2023 hàng và 2023 cột theo đường chéo zic-zắc. Yêu cầu là xác định vị trí của số 2024 trong bảng và giải thích lý do tại sao. Hy vọng rằng đề thi sẽ giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc các em học tốt và đạt kết quả cao trong kỳ thi!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT TP Hồ Chí Minh Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT TP Hồ Chí Minh Chúng tôi xin giới thiệu đến quý thầy cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023-2024 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào ngày 06 tháng 06 năm 2023, đề thi sẽ bao gồm đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023-2024 sở GD&ĐT TP Hồ Chí Minh: - Đề bài 1: Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH. Đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi J là giao điểm của AI và DE; K là trung điểm của AB. a) Chứng minh tứ giác BIJD nội tiếp. b) Gọi M là giao điểm của KI và AC, N là giao điểm của AH và ED. c) Gọi Q là giao điểm của DI và EF, P là trung điểm của BC. Chứng minh ba điểm A, P, Q thẳng hàng. - Đề bài 2: Cho đường tròn tâm O nội tiếp hình thoi ABCD. Gọi E, F, G, H là các điểm lần lượt thuộc các cạnh AB, BC, CD, DA sao cho EF, GH cùng tiếp xúc với (O). a) Chứng minh CG·AH = AO². b) Chứng minh EH song song FG. - Đề bài 3: Xét các số nguyên a < b < c thỏa mãn n = a³ + b³ + c³ - 3abc là số nguyên tố. a) Chứng minh: a < 0. b) Tìm tất cả các số nguyên dương a, b, c (a < b < c) sao cho n là ước của 2023. Hãy chuẩn bị kỹ càng và tự tin để tham gia kỳ thi tuyển sinh quan trọng này. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bình Định Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bình Định Chúng tôi xin giới thiệu đến các thầy cô và các em học sinh bản đề chính thức của kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên Toán & Tin học) năm học 2023 – 2024 tại sở Giáo dục và Đào tạo tỉnh Bình Định. Kỳ thi sẽ diễn ra vào ngày 06 tháng 06 năm 2023. Trích dẫn một số câu hỏi từ Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bình Định: 1. Cho phương trình bậc hai: \(x^2 + 2(m - 1)x - 2m = 0\) (m là tham số). Chứng minh phương trình đã cho luôn có hai nghiệm phân biệt \(x_1, x_2\) với mọi giá trị của m. Tìm các giá trị của m để hai nghiệm \(x_1, x_2\) thoả |\(x_1 + 1\)| = |\(x_2 + 1\)|. 2. Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB > AC. Các tiếp tuyến tại B, C của (O) cắt nhau tại P, đường thẳng AP cắt đường tròn (O) tại Q (khác A). Gọi M là trung điểm BC. Kẻ đường cao AH của tam giác ABC. Câu hỏi yêu cầu chứng minh một số điều kiện liên quan đến tứ giác, góc và tỷ lệ trong tam giác ABC. 3. Cho hình vuông có cạnh bằng 20. Bên trong hình vuông này chọn 2023 điểm phân biệt. Câu hỏi yêu cầu chứng minh sự tồn tại của ít nhất một tam giác có diện tích nhỏ hơn 1/10 trong tập hợp các điểm đã chọn và các đỉnh của hình vuông. Đây là một số câu hỏi mà các thí sinh sẽ phải giải quyết trong kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2023 – 2024 tại sở GD&ĐT Bình Định. Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!