Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Cầu Giấy - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào ngày … tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Cầu Giấy – Hà Nội : + Với các số thực không âm a, b, c thỏa mãn a + b + c = 3, tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức T = 1/(a + 1) + 1/(b + 1) + 1(c + 1). + Cho tam giác ABC nhọn, không cân (AB < AC). Các đường cao AD, BE, CF của tam giác ABC đồng qui tại H. Gọi M là trung điểm của BC; I là trung điểm của AH. 1) Chứng minh IEM = 90°. 2) Đường thẳng qua I và vuông góc với HM cắt HM, EF lần lượt tại N, S. Đoạn thẳng IM cắt EF tại J. Chứng minh IJ.IM = IN.IS và SH song song với BC. 3) Đường thẳng SI cắt AB, AC lần lượt tại P, Q. Chứng minh I là trung điểm của PQ. + Xét tập hợp A gồm các số nguyên dương thỏa mãn đồng thời các điều kiện sau: (i) Phần tử lớn nhất của tập hợp A là 100. (ii) Với mọi phần tử x thuộc A, nếu x không phải là phần tử nhỏ nhất thì tồn tại a, b, c thuộc A (a, b, c không nhất thiết phân biệt) sao cho x = a + b + c. 1) Chứng minh tất cả các phần tử của tập hợp A đều là số chẵn. 2) Tập hợp A có nhiều nhất là bao nhiêu phần tử?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 26 tháng 12 năm 2021.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình : + Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021 đôi một nguyên tố cùng nhau. Chứng minh trong 16 số trên có ít nhất một số là số nguyên tố. + Cho 8045 điểm trên một mặt phẳng sao cho cứ 3 điểm bất kì thì tạo thành một tam giác có diện tích nhỏ hơn 1. Chứng minh rằng luôn có thể có ít nhất 2012 điểm nằm trong tam giác hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1.
Đề thi HSG Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
Đề thi HSG Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Vinh – Nghệ An gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian giao đề).
Đề thi HSG thành phố Toán 9 năm 2021 - 2022 phòng GDĐT Đà Lạt - Lâm Đồng
Đề thi HSG thành phố Toán 9 năm 2021 – 2022 phòng GD&ĐT Đà Lạt – Lâm Đồng gồm 02 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Ba ngày 14 tháng 12 năm 2021.