Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán sử dụng nguyên lý bất biến trong giải toán

Tài liệu gồm 16 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán sử dụng nguyên lý bất biến trong giải toán, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ 1. Nguyên lý bất biến. Cho a, b, c là những số thực ta xét tổng S = a + b + c. Nếu ta đổi chỗ a cho b, b cho c, c cho a, thì tổng S luôn luôn chỉ là một (không đổi). Tổng này không thay đổi đối với thứ tự phép cộng. Dù a, b, c có thay đổi thứ tự như thế nào chăng nữa S vẫn không thay đổi, nghĩa là S bất biến đối với việc thay đổi các biến khác. Trong thực tế cũng như trong toán học, rất nhiều vấn đề liên quan đến một số đối tượng nghiên cứu lại bất biến đối với sự thay đổi của nhiều đối tượng khác. 2. Các bước áp dụng nguyên lý bất biến khi giải toán. Để giải toán được bằng đại lượng bất biến ta thực hiện theo các bước sau: + Bước 1: Ta phải phát hiện ra những đại lượng bất biến trong bài toán. Bước này tương đối khó nếu ta không luyện tập thường xuyên. + Bước 2: Xử lý tiếp đại lượng bất biến để tìm ra các điểm mâu thuẫn. B. BÀI TẬP VẬN DỤNG C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn thi vào môn Toán Vũ Văn Bắc
Nội dung Tài liệu ôn thi vào môn Toán Vũ Văn Bắc Bản PDF - Nội dung bài viết Chất lượng tài liệu ôn thi Toán Vũ Văn Bắc Chất lượng tài liệu ôn thi Toán Vũ Văn Bắc Tài liệu ôn thi Toán của Vũ Văn Bắc là một nguồn tư liệu hữu ích cho các học sinh đang ôn luyện vào môn Toán. Với tổng cộng 42 trang, tài liệu bao gồm nhiều vấn đề quan trọng: 1. Rút gọn biểu thức có chứa căn: Phần này giúp học sinh nắm vững kỹ năng rút gọn biểu thức để giải các bài toán liên quan. 2. Phương trình bậc hai một ẩn: Hướng dẫn cách giải phương trình bậc hai một ẩn một cách chi tiết và dễ hiểu. 3. Hệ phương trình đại số: Bao gồm các bài toán luyện tập về hệ phương trình để học sinh có thể áp dụng vào thực tế. 4. Các bài toán về đồ thị hàm số: Phần này giúp học sinh hiểu rõ hơn về đồ thị hàm số và cách vẽ đồ thị cho từng hàm số. 5. Giải toán bằng cách lập phương trình: Hướng dẫn cách giải các bài toán phức tạp bằng cách lập phương trình đúng. 6. Các bài toán hình học tổng hợp: Bao gồm các bài toán hình học đa dạng và phức tạp để học sinh rèn luyện kỹ năng giải bài toán. 7. Một số đề toán luyện thi: Cuối cùng, tài liệu cung cấp một số đề toán luyện thi giúp học sinh tự kiểm tra kiến thức và kỹ năng của mình. Với các vấn đề đa dạng và phong phú như vậy, tài liệu ôn thi Toán Vũ Văn Bắc sẽ giúp học sinh không chỉ tự tin hơn trong việc ôn luyện môn Toán mà còn nắm vững kiến thức cần thiết để đạt được kết quả cao trong kỳ thi sắp tới.