Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 12 môn Toán năm 2022 2023 trường THPT Hàm Rồng Thanh Hóa

Nội dung Đề học sinh giỏi lớp 12 môn Toán năm 2022 2023 trường THPT Hàm Rồng Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2022 – 2023 trường THPT Hàm Rồng, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án mã đề 652 740 420 007. Trích dẫn Đề học sinh giỏi Toán lớp 12 năm 2022 – 2023 trường THPT Hàm Rồng – Thanh Hóa : + Bạn Nam có một hộp bi gồm 2 viên bi màu đỏ và 4 viên bi màu trắng. Bạn Định cũng có một hộp bi giống như của bạn Nam. Từ hộp của mình, mỗi bạn chọn ngẫu nhiên 3 viên bi. Xác suất để trong các viên bi được chọn luôn có bi màu đỏ và số bi đỏ của hai bạn bằng nhau là? + Một công ty mỹ phẩm chuẩn bị ra một mẫu sản phẩm dưỡng da mới mang tên Ngọc Trai với thiết kế một khối cầu như viên ngọc trai, bên trong là một khối trụ nằm trong nửa khối cầu để dựng kem dưỡng. Theo dự kiến, nhà sản xuất có dự định để khối cầu có bán kính là R 3 3 cm. Tính thể tích lớn nhất của khối trụ đựng kem để thể tích thực ghi trên bìa hộp là lớn nhất (với mục đích thu hút khách hàng). + Cho tập hợp A gồm n phần tử (n >= 4). Biết rằng số tập con gồm 4 phần tử của A bằng 20 lần số tập con gồm 2 phần tử của A. Biết rằng k là số tự nhiên trong các số từ 1 đến n thỏa mãn số tập con gồm k phần tử của A là lớn nhất. Số k thuộc khoảng nào sau đây?

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Nam (đợt 1)
Nội dung Đề học sinh giỏi tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Nam (đợt 1) Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam (đợt 1); kỳ thi được diễn ra vào ngày 07 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Quảng Nam (đợt 1) : + Cho đường tròn (O) và hai điểm A, B cố định nằm trên đường tròn (O) sao cho ba điểm O, A, B không thẳng hàng. Xét một điểm C trên đường tròn (O) sao cho tam giác ABC không cân tại C. Gọi (O1) là đường tròn đi qua A và tiếp xúc với BC tại C; (O2) là đường tròn đi qua B và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai là D (D khác C). a) Tiếp tuyến của đường tròn (O) tại C cắt đường thẳng OD tại S. Chứng minh OA là tiếp tuyến của đường tròn ngoại tiếp tam giác ADS. b) Chứng minh đường thẳng CD luôn đi qua một điểm cố định khi điểm C di động trên đường tròn (O) (tam giác ABC không cân tại C). + Cho tập hợp X có 2023 phần tử. Hỏi có tất cả bao nhiêu cách chọn hai tập hợp con khác nhau của X sao cho giao của hai tập hợp này là một tập hợp có đúng một phần tử? + Tìm tất cả các cặp số nguyên tố p và q thỏa mãn 2^p + 2^q chia hết cho p.q.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Quảng Ninh
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Quảng Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi lập đội tuyển của tỉnh dự thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ninh; kỳ thi được diễn ra trong hai ngày: 06/10/2022 (ngày thi thứ nhất) và 07/10/2022 (ngày thi thứ hai). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Tìm tất cả các đa thức P(x) hệ số thực, thỏa mãn: Nếu tồn tại các số thực a, b, c sao cho 7P(a) + 10P(b) + 2022P(c) = 0 thì 7a + 10b + 2022c = 0. + Cho tam giác ABC nội tiếp (O) cố định, BC cố định và điểm A thay đổi trên cung lớn BC sao cho tam giác ABC nhọn, không cân. Lấy điểm X trên đường thẳng AC và điểm Y trên đường thẳng AB sao cho BX, CY vuông góc BC, đường tròn (AXY) cắt (O) tại L khác A. a) Gọi AD là đường kính của (O). Chứng minh rằng đường thẳng DL luôn đi qua điểm cố định khi A thay đổi. b) Gọi P, Q lần lượt là giao điểm thứ hai của BX, CY với đường tròn(AXY). Chứng minh rằng giao điểm của PQ và tiếp tuyến tại A của đường tròn (AXY) luôn nằm trên một đường cố định. c) Chứng minh rằng tiếp tuyến tại A của đường tròn (AXY), tiếp tuyến tại L của (O) và đường thẳng BC đồng quy. + Có 2022 học sinh ngồi thành một vòng tròn. Ban đầu, một học sinh nào đó sẽ được đưa cho n đồng xu, n là số nguyên dương. Ở mỗi lượt, tất cả các học sinh hiện có ít nhất 2 đồng xu sẽ chuyển 2 đồng xu sang hai học sinh ngồi bên cạnh (mỗi người 1 đồng xu). a) Chứng minh rằng với n < 2022, quá trình này sẽ dừng sau hữu hạn lượt. b) Chứng minh rằng với n = 2022, quá trình này sẽ kéo dài vô hạn.
Đề chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 27 tháng 09 năm 2022. Trích dẫn Đề chọn học sinh giỏi Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho dãy số (un) xác định bởi u1 = 1; un+1 = un + 2/un + n/un^4 với mọi n nguyên dương. Chứng minh dãy số (yn) với yn = un/n (n nguyên dương) có giới hạn hữu hạn. Tính giới hạn đó. + Cho tam giác ABC không cân nội tiếp đường tròn (O). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc các cạnh BC, CA, AB lần lượt tại D, E, F. H là hình chiếu vuông góc của D lên EF. Tia IH cắt đường tròn (O) tại K. Đường tròn ngoại tiếp hai tam giác KBF, KCE cắt nhau tại T khác K. Gọi M là trung điểm TD. Qua M kẻ tiếp tuyến MN của đường tròn (I) (N là tiếp điểm khác D). a) Chứng minh T, E, F thẳng hàng và đường tròn ngoại tiếp tam giác NBC tiếp xúc (I). b) AN cắt đường tròn ngoại tiếp tam giác NBC ở S khác N. Hai tiếp tuyến của đường tròn (I) kẻ từ S cắt đường tròn ngoại tiếp tam giác NBC lần lượt tại P, Q. Chứng minh hai đường thẳng PQ và BC song song với nhau. + Hình vuông ABCD có độ dài cạnh là 2023 được chia thành 2023^2 ô vuông đơn vị. Ta kí hiệu (m;n) là ô ở hàng thứ m và cột thứ n. Người ta tô tất cả các ô vuông đơn vị bởi hai màu xanh, đỏ sao cho hai ô khác nhau đối xứng qua đường thẳng AC thì được tô khác màu. Gọi S là tập hợp các bộ ba số m, n, p đôi một khác nhau (không phân biệt thứ tự); m, n, p thuộc {1; 2; 3; …; 2023} sao cho các ô (m;n), (n;p) và (p;m) có cùng màu. Kí hiệu |S| là số phần tử tập hợp S. a) Tồn tại hay không cách tô màu sao cho |S| = 0? b) Chứng minh rằng: |S| =< 1^2 + 2^2 + … +1011^2.