Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 (lần 1) năm 2021 - 2022 trường THCS Chu Văn An - Hà Nội

Đề khảo sát Toán 9 (lần 1) năm 2021 – 2022 trường THCS Chu Văn An – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút; kỳ thi được diễn ra vào ngày 25 tháng 09 năm 2021. Trích dẫn đề khảo sát Toán 9 (lần 1) năm 2021 – 2022 trường THCS Chu Văn An – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một phân xưởng ký hợp đồng dệt một số khăn mặt trong 20 ngày. Do cải tiến kĩ thuật, mỗi ngày phân xưởng đã sản xuất được nhiều hơn 30 chiếc khăn so với hợp đồng, vì thế phân xưởng đã dệt xong số khăn ký hợp đồng trong 18 ngày và còn dệt thêm được 24 chiếc. Tính số khăn mà phân xưởng phải dệt theo hợp đồng? + Từ nhà bạn Ly đến trường cách 500m. Nhưng hôm nay khi đi đến ngã ba thì đường đang sửa chữa nên Ly phải đi sang nhà bạn An rồi từ nhà An (cách trường 400m) mới tới trường. Tính quãng đường đến trường hôm nay của Ly, biết rằng con đường từ nhà Ly đến nhà An và con đường từ nhà An đến trường vuông góc với nhau. + Cho tam giác ABC vuông tại A, AH là đường cao, cho AB = 9cm, BH = 5cm. a. Tính độ dài đoạn thẳng AH, AC, BC (kết quả làm tròn đến chữ số thập phân thứ nhất ). b. Hai điểm E, D lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng: AE.AB = AD.AC. c. Chứng minh.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán vào năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá
Nội dung Đề KSCL Toán vào năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Bản PDF - Nội dung bài viết Đề KSCL Toán vào năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Đề KSCL Toán vào năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán để ôn thi tuyển sinh vào lớp 10 THPT năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá. Kỳ thi sẽ diễn ra vào ngày 02 tháng 06 năm 2022. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề KSCL Toán vào lớp 10 năm 2022 - 2023 của phòng GD&ĐT Thọ Xuân - Thanh Hoá: + Cho nửa đường tròn có tâm O, bán kính R, đường kính AB, I là điểm cố định thuộc đoạn thẳng OB. Vẽ đường thẳng d vuông góc với AB tại I, d cắt nửa đường tròn tại K. Lấy điểm M thuộc cung nhỏ BK, tia BM cắt đường thẳng d tại C, đoạn thẳng AM cắt đường thẳng d tại N, AC cắt nửa đường tròn tại D. a) Chứng minh tứ giác BMNI là tứ giác nội tiếp b) Chứng minh ba điểm B, N, D thẳng hàng và tính AD.AC + BM.BC theo R c) Chứng minh O’ luôn nằm trên một đường thẳng cố định khi M di chuyển trên cung nhỏ KB. + Trong hệ trục tọa độ Oxy, cho parabol (P): y = 2x^2 và đường thẳng (d): y = (m + 1)x – m + 3 (m là tham số ) a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm A và B phân biệt với mọi giá trị của m b) Tìm giá trị m để 2y1 + 2y2 = (m + 1)x2 + 2 + 8. + Cho 3 số thực dương x, y, z thỏa mãn: x^2 + y^2 + z^2 = 1. Tìm giá trị nhỏ nhất của biểu thức: 2x^2y^2z^2 + y^2z^2x^2 + z^2x^2y^2. Đề thi năm nay đòi hỏi kiến thức và sự sáng tạo của các em học sinh. Chúc các em có kết quả tốt trong kỳ thi sắp tới!