Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Kỳ Anh - Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Kỳ Anh, tỉnh Hà Tĩnh. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Kỳ Anh – Hà Tĩnh : + Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn AD sao cho AE/AD = 2/5. Gọi K là giao điểm của BE và AC. Tính tỉ số AK/KC. + Cho hình vuông ABCD. Gọi E và F lần lượt là trung điểm của AB và BC và I là giao điểm của DF và CE. Tính diện tích tứ giác BEIF biết diện tích hình vuông là 36 cm2. + Trường nọ tổ chức tuyển cầu thủ bóng rổ. Mỗi học sinh dự tuyển thực hiện ném 15 quả bóng. Mỗi quả bóng ném vào rổ được cộng 5 điểm. Mỗi quả bóng ném ra ngoài thì bị trừ 2 điểm. Nếu bạn nào có số điểm từ 60 điểm trở lên thì sẽ được chọn vào đội tuyển. Hỏi một học sinh muốn được chọn vào đội tuyển thì phải ném vào rổ ít nhất bao nhiêu quả bóng.

Nguồn: toanmath.com

Đọc Sách

Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 cụm Trung học Cơ sở phòng Giáo dục và Đào tạo UBND huyện Vĩnh Lộc, tỉnh Thanh Hóa; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2023. Trích dẫn đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Tìm đa thức P(x) thoả mãn: P(x) chia cho x + 3 dư 1; chia cho x – 4 dư 8; chia cho (x + 3)(x – 4) được thương là 3x và còn dư. + Tìm số tự nhiên có 9 chữ số: 1 2 312 31 2 3 A aa abbba trong đó 1 a 0 và 123 12 3 bbb aa a 2 và đồng thời A viết được dưới dạng 2 1 234 A p với 1234 pp là bốn số nguyên tố. + Cho tam giác ABC vuông tại A (AB AC) gọi AD là tia phân giác của góc BAC. Gọi M và N lần lượt là hình chiếu của D trên AB và AC; E là giao điểm của BN và DM, F là giao điểm của CM và DN. a) Chứng minh tứ giác AMDN là hình vuông và EF BC. b) Gọi H là giao điểm của BN và CM. Chứng minh ∆ANB đồng dạng với ∆NFA và H là trực tâm ∆AEF. c) Gọi P là điểm trên AN, Q là điểm trên AM sao cho AP = MQ. Tìm vị trí của P và Q để diện tích tứ giác MQPN đạt giá trị nhỏ nhất.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Chương Mỹ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Chương Mỹ – Hà Nội : + Giải phương trình: (4x − 5)2(2x − 3)(x − 1) = 9. Tìm các cặp số nguyên (x;y) thỏa mãn: 3×2 + 5y2 = 345. Tìm hệ số a, b để đa thức x5 – 6×2 + ax + b chia hết cho đa thức x2 – 3x + 2. + Cho hình chữ nhật ABCD, gọi H là hình chiếu của D trên AC. Gọi M, N, K lần lượt là trung điểm của BC, AH, DH. 1) Tứ giác MNKC là hình gì? Vì sao? 2) Chứng minh rằng: DH2 = HA.HC. 3) Chứng minh rằng: AND đồng dạng với DKC. 4) Chứng minh rằng: DN vuông góc NM. + Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.
Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Chí Linh – Hải Dương : + Đa thức f x chia cho x + 1 dư 4, chia cho x2 + 1 dư 2 3 x. Tìm phần dư khi chia đa thức f x cho 2 x x 1 1. + Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn 2 n 4 và 2 n 16 là các số nguyên tố thì n chia hết cho 5. + Cho tam giác ABC nhọn có AB < AC. Các đường cao AD, BE, CF cắt nhau tại điểm H. 1) Chứng minh: 2 AH BH CH AD BE CF. 2) Gọi M là trung điểm của AC. Qua H kẻ đường thẳng vuông góc với HM, đường thẳng này cắt AB, BC lần lượt tại P, Q. Chứng minh AM.BQ = AH.BH. 3) Chứng minh MPQ là tam giác cân.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT thành phố Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Ninh Bình, tỉnh Ninh Bình; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 150 phút. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT thành phố Ninh Bình : + Một vật thể chuyển động từ A đến B theo cách sau: đi được 4m thì dừng lại 1 giây, rồi đi tiếp 8m dừng lại 2 giây, rồi đi tiếp 12m dừng lại 3 giây … Cứ như vậy đi từ A đến B kể cả dừng hết tất cả 155 giây. Biết rằng khi đi vật thể luôn có vận tốc 2m / giây. Tính khoảng cách từ A đến B. + Cho hình vuông ABCD. Qua A kẻ một đường thẳng cắt đoạn thẳng BC tại P (P khác B, P khác C) và cắt tia DC tại Q. Kẻ đường thẳng vuông góc với AP tại A, đường thẳng này cắt tia CB tại R và cắt tia CD tại S. Tia SP cắt QR tại H. Gọi M; N lần lượt là trung điểm của QR và SP. Chứng minh rằng: a) AQR và APS là các tam giác vuông cân. b) Tứ giác AMHN là hình chữ nhật. c) MN là đường trung trực của đoạn thẳng AC. + Cho tam giác ABC có góc ABC = 30°. Dựng bên ngoài tam giác ABC tam giác ACD vuông cân tại D. Chứng minh rằng 2BD2 = BA2 + BC2 + BA.BC.