Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu ôn tập thi THPT Quốc gia 2018 môn Toán - Sở GD và ĐT Tuyên Quang

Tài liệu ôn tập thi THPT Quốc gia theo định hướng phát triển năng lực học sinh năm học 2017 – 2018 môn Toán của sở GD và ĐT Tuyên Quang gồm 443 trang. Tài liệu ôn tập được xây dựng theo các chủ đề, chuyên đề Toán của cả lớp 11 và lớp 12, mỗi chủ đề, chuyên đề bao gồm các phần: Kiến thức cơ bản, luyện tập và các câu hỏi trắc nghiệm. Nội dung tài liệu : Ứng dụng của đạo hàm – Tính đơn điệu của hàm số – Cực trị của hàm số – GTLN, GTNN của hàm số. Bài toán tối ưu – Đường tiệm cận của đồ thị hàm số – Đồ thị của hàm số – Sự tương giao giữa các đồ thị. Tiếp tuyến của đồ thị hàm số Lũy thừa – Mũ – Logarit – Lũy thừa, mũ và logarit – Hàm số lũy thừa, hàm số mũ và hàm số logarit – Bài toán lãi suất – Phương trình, bất phương trình mũ – Phương trình, bất phương trình logarit Nguyên hàm – Tích phân và ứng dụng – Nguyên hàm – Tích phân – Ứng dụng của tích phân Số phức – Dạng đại số và các phép toán trên tập số phức – Phương trình bậc hai với hệ số thực – Biểu diễn hình học của số phức [ads] Khối đa diện, mặt nón, mặt trụ và mặt cầu – Khối đa diện và thể tích khối đa diện – Mặt nón, mặt trụ và mặt cầu Phương pháp tọa độ trong không gian – Hệ tọa độ trong không gian – Phương trình mặt cầu – Phương trình mặt phẳng – Phương trình đường thẳng – Vị trí tương đối giữa đường thẳng, mặt phẳng, mặt cầu – Góc và khoảng cách Lượng giác – Cung và góc lượng giác. Giá trị lượng giác của một cung. Công thức lượng giác – Hàm số lượng giác – Phương trình lượng giác cơ bản và thường gặp Tổ hợp – xác suất – Quy tắc đếm – Hoán vị, chỉnh hợp, tổ hợp – Nhị thức Niu-Tơn – Phép thử và biến cố – Xác suất của biến cố Dãy số – Giới hạn – Phương pháp quy nạp toán học – Dãy số, cấp số cộng và cấp số nhân – Giới hạn của dãy số – Giới hạn của hàm số – Hàm số liên tục Đạo hàm – Định nghĩa và ý nghĩa đạo hàm – Quy tắc tính đạo hàm – Đạo hàm của hàm số lượng giác – Vi phân – Đạo hàm cấp cao Phép dời hình, phép đồng dạng trong mặt phẳng Hình học không gian lớp 11 – Quan hệ song song trong không gian – Quan hệ vuông góc trong không gian – Khoảng cách và góc

Nguồn: toanmath.com

Đọc Sách

Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2
Nội dung Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 Bản PDF - Nội dung bài viết Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 Tài liệu Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 được biên soạn bởi thầy giáo Ths. Nguyễn Chín Em và bao gồm 213 trang. Đây là tài liệu được sưu tầm kỹ lưỡng với mục đích hỗ trợ học sinh ôn tập và tự kiểm tra kiến thức trước kỳ thi quan trọng. Tài liệu này cung cấp 50 dạng toán khác nhau, từ những dạng toán cơ bản đến phức tạp, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán một cách linh hoạt. Mỗi câu hỏi và bài toán trong đề thi đều được kèm theo nhiều câu hỏi và bài toán tương tự, đồng thời có đáp án và lời giải chi tiết giúp học sinh tự kiểm tra và tự mình sửa sai. Các dạng toán trong tài liệu được chia thành nhiều cấp độ, từ lớp 1 đến lớp 50, bao gồm cả các dạng toán về hoán vị, chỉnh hợp, tổ hợp, phương trình mũ, logarit, hàm số mũ, nguyên hàm, tích phân, thể tích khối đa diện, số phức, hệ Oxyz, hàm số, và nhiều dạng toán khác. Điều này giúp học sinh tiếp cận một cách toàn diện các kiến thức cần thiết cho kỳ thi tốt nghiệp THPT. Qua tài liệu này, học sinh không chỉ được cung cấp nguồn tư liệu ôn tập mà còn được rèn luyện kỹ năng giải toán, tư duy logic và khả năng tự giác trong việc học tập. Đồng thời, tài liệu cũng giúp học sinh nâng cao kiến thức và tự tin hơn khi bước vào kỳ thi quan trọng của mình.
Phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020
Nội dung Phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020 Bản PDF - Nội dung bài viết Phát triển bộ đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020 Phát triển bộ đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020 Trong bối cảnh học sinh trở lại trường sau thời gian dài nghỉ học vì dịch bệnh, đặc biệt là học sinh khối 12 đang chuẩn bị cho kỳ thi THPT Quốc gia, tập thể quý thầy cô nhóm Geogebra - Nguyễn Chín Em đã sáng tạo và phát triển bộ đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020. Bộ tài liệu gồm 218 trang, chứa một loạt câu hỏi và bài tập được xây dựng dựa trên cấu trúc logic, giúp học sinh hiểu rõ, áp dụng kiến thức vào thực tế một cách hiệu quả.
Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề
Nội dung Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề Bản PDF - Nội dung bài viết Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Tài liệu đề tham khảo THPTQG 2020 môn Toán được biên soạn bởi nhóm Strong Team Toán VD – VDC, gồm 105 trang chứa các câu hỏi và bài toán minh họa trong đề thi. Tất cả các bài toán đều được giải chi tiết theo nhiều cách khác nhau, giúp học sinh hiểu rõ hơn về cách giải và rèn luyện kỹ năng ra đề. Tài liệu được chia thành hai phần tùy theo mức độ nhận thức: Phần 1: Mức độ Nhận biết – Thông hiểu từ trang 1 đến trang 68. Phần 2: Mức độ Vận dụng từ trang 69 đến trang 105. Ví dụ về các bài toán trong tài liệu: Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng cắt hình nón theo thiết diện là tam giác vuông diện tích bằng 4. Tìm thể tích của khối nón. Cho hàm số y = f(x) liên tục trên R, gọi S là tập hợp các giá trị nguyên m để phương trình f(sin x) = 3sinx + m có nghiệm thuộc khoảng (0;π). Tính tổng các phần tử của S. Trong không gian Oxyz, mặt cầu (S) : x^2 + y^2 + z^2 − 4x − 2y + 2z − 3 = 0 và điểm M (4; 2; −2). Điểm M thuộc tâm, trên, trong hay ngoài mặt cầu (S)? Đề tham khảo này không chỉ giúp học sinh ôn tập hiệu quả mà còn phát triển khả năng giải quyết các dạng toán phổ biến trong đề thi THPT Quốc Gia môn Toán.
Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán
Nội dung Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán Bản PDF - Nội dung bài viết Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: "Dựa trên " Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: "Dựa trên " Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán dựa trên nền tảng của chương trình học và kiến thức cơ bản trong sách giáo khoa. Đề thi được xây dựng với mục tiêu giúp học sinh rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và phân tích một cách logic và tổng hợp thông tin. Bên cạnh việc đánh giá kiến thức, đề thi cũng tập trung vào việc khuyến khích học sinh phát triển khả năng sáng tạo, tự tin và kiên nhẫn khi giải các bài toán khó. Các câu hỏi trong đề thi không chỉ yêu cầu kiến thức mà còn đòi hỏi học sinh có khả năng áp dụng kiến thức vào các tình huống thực tế và bài toán đa chiều. Với sự phong phú và đa dạng về nội dung, đề thi tham khảo môn Toán sẽ giúp học sinh tự tin và sẵn sàng tham gia kỳ thi quan trọng. Đồng thời, đề thi cũng là công cụ hữu ích giúp giáo viên đánh giá năng lực học sinh và điều chỉnh phương pháp dạy học phù hợp.