Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán - Nguyễn Hoàng Việt

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán gồm 193 trang, được biên soạn bởi thầy giáo Th.S Nguyễn Hoàng Việt (giáo viên Toán trường THPT Lương Thế Vinh, tỉnh Quảng Bình). MỤC LỤC : Câu 39 1. Câu 40 12. + Dạng 1. Sự tương giao biết đồ thị hàm f(x) – loại không có tham số m 12. + Dạng 2. Sự tương giao biết đồ thị hàm f(x) – Loại có tham số m 18. + Dạng 3. Sự tương giao biết đồ thị hàm f(x) – Loại có chứa hàm lượng giác 21. + Dạng 4. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại không có tham số m 23. + Dạng 5. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại có tham số m 32. + Dạng 6. Sự tương giao biết bảng biến thiên hàm số f(x) – Có chứa hàm số lượng giác 34. Câu 41 37. + Dạng 7. Tính nguyên hàm & tích phân sử dụng tính chất và nguyên hàm cơ bản 37. + Dạng 8. Tính nguyên hàm & tích phân bằng phương pháp đổi biến 41. + Dạng 9. Tích phân từng phần 45. + Dạng 10. Tích phân hàm ẩn 50. Câu 42 58. Câu 43 68. + Dạng 11. Tham số m của phương trình bậc hai 68. + Dạng 12. Phương trình đưa về bậc hai 70. + Dạng 13. Tìm số phức thỏa mãn điều kiện cho trước 72. + Dạng 14. Tính toán các yếu tố của số phức (mức vận dụng) 74. + Dạng 15. Bài toán tập hợp điểm 77. Câu 44 81. + Dạng 16. Bài toán min – max với quỹ tích là đường tròn (Phương pháp hình học) 82. + Dạng 17. Bài toán min – max với quỹ tích là đường tròn (Phương pháp đại số) 91. + Dạng 18. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp hình học) 97. + Dạng 19. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp đại số) 100. + Dạng 20. Bài toán min – max với quỹ tích là đường tròn, đường thẳng (Phương pháp hình học) 104. + Dạng 21. Bài toán min – max với quỹ tích là elip 109. + Dạng 22. Bài toán min – max với quỹ tích là pararbol 110. + Dạng 23. Bài toán min – max với quỹ tích là hyperbol 113. Câu 45 115. + Dạng 24. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số f0(x), g0(x) khi biết các cực trị của hàm số f(x) − g(x) hoặc các cực trị của hàm số f0(x) − g0 (x) 116. + Dạng 25. Tính diện tích hình phẳng dựa vào tính chất đồ thị và các hoành độ tiếp điểm 118. + Dạng 26. Ứng dụng diện tích hình phẳng để so sánh giá trị hàm số 120 . + Dạng 27. Ứng dụng diện tích hình phẳng để tính tích phân 123 . Câu 46 126. + Dạng 28. Lập đường thẳng đi qua một điểm A, cắt đường thẳng d1 và song song với mặt phẳng (P) 126. + Dạng 29. Lập đường thẳng d đi qua M, vuông góc với d1 và cắt d2 130. + Dạng 30. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua giao điểm 131. + Dạng 31. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua tích có hướng 133. Câu 47 136. + Dạng 32. Khối nón bị cắt bởi một mặt phẳng đi qua đỉnh và không qua trục 136. + Dạng 33. Khối nón nội tiếp, ngoại tiếp khối tròn xoay hoặc khối đa diện 138. + Dạng 34. Khối trụ bị cắt bởi một mặt phẳng song song với trục 139. + Dạng 35. Khối trụ bị cắt bởi mặt phẳng cắt qua trục 140. + Dạng 36. Khối trụ nội tiếp ngoại tiếp khối đa diện hoặc khối tròn xoay 141. + Dạng 37. Mặt cầu ngoại tiếp khối lăng trụ 142. + Dạng 38. Mặt cầu ngoại tiếp khối chóp 143. Câu 48 148. + Dạng 39. Phương trình, bất phương trình có thể chuyển về dạng f(A) = f(B) hoặc f(A) ≤ f(B), trong đó f(x) là hàm số đơn điệu 148. + Dạng 40. Phương trình, bất phương trình f(x, y) = 0 hoặc f(x, y) ≥ 0 có hàm số f(x, y) đơn điệu theo biến x hoặc biến y 156. + Dạng 41. Phương trình, bất phương trình dạng f(x, y) = 0 hoặc f(x, y) ≥ 0, trong đó hàm số f(x, y) có đạo hàm cấp hai theo biến x hoặc biến y không đổi dấu 163. + Dạng 42. Sử dụng bất đẳng thức Bernoulli hoặc ax ≤ mx + n, ∀x ∈ [α; β] 165. Câu 49 167. + Dạng 43. Các bài toán tìm điểm 167. + Dạng 44. Các bài toán lập phương trình mặt cầu 170. + Dạng 45. Các bài toán lập phương trình mặt phẳng 173. Câu 50 178. + Dạng 46. Tìm cực trị của hàm số hợp g(x) = f[u(x)] khi biết đồ thị hàm số f(x) hay BBT hàm số f(x) 178. + Dạng 47. Tìm tham số để hàm số chứa giá trị tuyệt đối đạt giá trị lớn nhất trên một đoạn 184. + Dạng 48. Tìm tham số để hàm số hợp có số điểm cực trị cho trước 184.

Nguồn: toanmath.com

Đọc Sách

15 dạng toán VD VDC ôn thi THPT môn Toán
Nội dung 15 dạng toán VD VDC ôn thi THPT môn Toán Bản PDF Bộ tài liệu "15 dạng toán VD-VDC ôn thi THPT môn Toán" bao gồm 777 trang, đã được tuyển chọn kỹ lưỡng từ hàng trăm câu hỏi và bài tập trắc nghiệm, được phân loại thành 15 dạng toán vận dụng và vận dụng cao (VD-VDC) để giúp học sinh ôn tập hiệu quả cho kỳ thi THPT môn Toán. Mỗi dạng toán được minh họa và giải thích chi tiết, giúp học sinh hiểu rõ từng bước giải quyết vấn đề.Dưới đây là một số dạng toán trong tài liệu:Dạng Toán lớp 1: Tính xác suất bằng định nghĩa.Dạng Toán lớp 2: Tính khoảng cách giữa hai đường thẳng chéo nhau.Dạng Toán lớp 3: Tích phân.Dạng Toán lớp 4: Tìm tham số để hàm số bậc nhất hoặc bậc nhất đơn điệu.Dạng Toán lớp 5: Tính toán liên quan đến khối nón.Dạng Toán lớp 6: Bài tập về logarithm.Dạng Toán lớp 7: Xác định giá trị lớn nhất và nhỏ nhất của hàm số trị tuyệt đối chứa tham số.Dạng Toán lớp 8: Giải phương trình logarithm có chứa tham số.Dạng Toán lớp 9: Tính nguyên hàm từng phần.Dạng Toán lớp 10: Bài toán về giao điểm của hai đồ thị.Dạng Toán lớp 11: Tìm cực trị của hàm hợp f(u(x)) biết đồ thị hàm số f(x) hoặc f'(x).Dạng Toán lớp 12: Ứng dụng phương pháp hàm số để giải phương trình mũ hoặc logarithm.Dạng Toán lớp 13: Tích phân liên quan đến hàm ẩn.Dạng Toán lớp 14: Tính thể tích của khối đa diện.Dạng Toán lớp 15: Xác định tính đơn điệu của hàm liên kết.Tài liệu có đáp án và lời giải chi tiết, giúp học sinh tự kiểm tra và cải thiện kỹ năng giải toán một cách hiệu quả. Đây sẽ là nguồn tư liệu hữu ích giúp học sinh ôn luyện và tự tin trước kỳ thi quan trọng sắp tới.
Tài liệu ôn thi THPT môn Toán giai đoạn 1 Lê Văn Đoàn
Nội dung Tài liệu ôn thi THPT môn Toán giai đoạn 1 Lê Văn Đoàn Bản PDF - Nội dung bài viết Tài liệu ôn thi THPT môn Toán giai đoạn 1 Lê Văn Đoàn Tài liệu ôn thi THPT môn Toán giai đoạn 1 Lê Văn Đoàn Tài liệu ôn thi THPT môn Toán giai đoạn 1 của thầy Lê Văn Đoàn bao gồm 83 trang được biên soạn bởi nhóm Toán gồm các thầy: Ths. Lê Văn Đoàn, Ths. Trương Huy Hoàng, Ths. Nguyễn Tiến Hà, Bùi Sỹ Khanh, Nguyễn Đức Nam, và Đỗ Minh Tiến. Tài liệu này tập trung vào các chuyên đề quan trọng như hàm số và các vấn đề liên quan, thể tích khối đa diện, giúp học sinh khối 12 ôn thi THPT môn Toán giai đoạn giữa học kỳ 1. Tài liệu bao gồm 481 bài tập trắc nghiệm (có đáp án) từ các chuyên đề như sau: Chuyên đề 1. HÀM SỐ VÀ CÁC VẤN ĐỀ LIÊN QUAN Bài toán lớp 1: Đơn điệu, cực trị, giá trị lớn nhất – giá trị nhỏ nhất, tiệm cận và tương giao khi đề bài cho bảng biến thiên hoặc đồ thị f(x) hoặc f'(x). Bài toán lớp 2: Đơn điệu, cực trị, giá trị lớn nhất – giá trị nhỏ nhất, tiệm cận và tương giao khi đề bài cho hàm số f(x) hoặc f'(x) cụ thể. Bài toán lớp 3: Bài toán chứa tham số. ... Chuyên đề 2. THỂ TÍCH KHỐI ĐA DIỆN Bài toán lớp 1: Thể tích khối chóp, khối lập phương, khối hộp chữ nhật, khối lăng trụ. Bài toán lớp 2: Bài toán cực trị thể tích. Bài toán lớp 3: Tỉ số thể tích. ... Tài liệu này cung cấp những bài tập đa dạng và phong phú, giúp học sinh hiểu rõ hơn về các chuyên đề Toán quan trọng và chuẩn bị tốt cho kỳ thi THPT sắp tới.
Các chuyên đề Giải tích ôn thi tốt nghiệp THPT Lư Sĩ Pháp
Nội dung Các chuyên đề Giải tích ôn thi tốt nghiệp THPT Lư Sĩ Pháp Bản PDF - Nội dung bài viết Các chuyên đề Giải tích ôn thi tốt nghiệp THPT Lư Sĩ Pháp Các chuyên đề Giải tích ôn thi tốt nghiệp THPT Lư Sĩ Pháp Tài liệu này bao gồm 118 trang và đã được biên soạn bởi thầy Lư Sĩ Pháp. Đây là tập 1 trong bộ sách "Toán ôn thi tốt nghiệp", tập trung vào các chuyên đề về Giải tích. Nội dung của tài liệu được thiết kế để bám sát chương trình của Bộ Giáo dục và Đào tạo, mang lại cho học sinh sự chuẩn bị tốt nhất cho kỳ thi tốt nghiệp THPT. Trên các trang của tài liệu, bạn sẽ tìm thấy hệ thống bài tập trắc nghiệm Giải tích có đáp án, giúp bạn kiểm tra và củng cố kiến thức một cách hiệu quả. Các chuyên đề trong tài liệu bao gồm: 1. Khảo sát hàm số (trang 01 – trang 36) 2. Lũy thừa – mũ – lôgarit (trang 37 – trang 59) 3. Nguyên hàm – tích phân (trang 60 – trang 83) 4. Số phức (trang 84 – trang 99) 5. Cấp số cộng – cấp số nhân (trang 100 – trang 104) 6. Tổ hợp – xác suất (trang 105 – trang 114) Với cấu trúc rõ ràng và dễ hiểu, tài liệu này sẽ giúp bạn nắm vững kiến thức cơ bản và nâng cao về Giải tích để tự tin đối mặt với bài thi tốt nghiệp THPT. Hãy cùng thầy Lư Sĩ Pháp trải nghiệm bộ sách hữu ích này và đạt thành tích tốt nhất trong kỳ thi sắp tới!
Tài liệu ôn thi THPT Quốc gia môn Toán Hồ Xuân Trọng
Nội dung Tài liệu ôn thi THPT Quốc gia môn Toán Hồ Xuân Trọng Bản PDF - Nội dung bài viết Tài liệu ôn thi THPT Quốc gia môn Toán Hồ Xuân TrọngPHẦN I: GIẢI TÍCHPHẦN II: HÌNH HỌCPHẦN III: ĐẠI SỐ & GIẢI TÍCHPHẦN IV: HÌNH HỌC Tài liệu ôn thi THPT Quốc gia môn Toán Hồ Xuân Trọng Tài liệu ôn thi THPT Quốc gia môn Toán do thầy giáo Hồ Xuân Trọng biên soạn gồm tổng cộng 335 trang. Được tuyển chọn kỹ lưỡng từ các câu hỏi và bài tập trắc nghiệm các chủ đề quan trọng trong chương trình ôn thi THPT Quốc gia môn Toán. Tài liệu được chia thành các phần sau: PHẦN I: GIẢI TÍCH CHƯƠNG 1: Khảo sát hàm số và ứng dụng - Sự đồng biến, nghịch biến của hàm số - Tìm điều kiện để hàm số đơn điệu trên một khoảng cho trước - Tính đơn điệu của hàm hợp - Cực trị của hàm số - Tìm cực trị của hàm số hợp - Giá trị lớn nhất và nhỏ nhất của hàm số - Tiệm cận của đồ thị hàm số - Nhận dạng hàm số từ đồ thị, bảng biến thiên - Phát hiện tính chất của hàm số dựa và đồ thị của hàm số CHƯƠNG 2: Hàm số lũy thừa, mũ, và logarit - Lôgarit - Phương trình và bất phương trình logarit, mũ - Ứng dụng phương pháp hàm số giải phương trình mũ và logarit CHƯƠNG 3: Nguyên hàm, tích phân và ứng dụng - Nguyên hàm cơ bản - Tính chất của tích phân - Ứng dụng của tích phân CHƯƠNG 4: Số phức - Khái niệm số phức và các phép toán - Biểu diễn hình học của số phức PHẦN II: HÌNH HỌC CHƯƠNG 5: Thể tích khối đa diện - Tính thể tích khối chóp và lăng trụ CHƯƠNG 6: Mặt nón - Mặt trụ - Mặt cầu - Hình nón, khối nón - Khối trụ CHƯƠNG 7: Phương pháp tọa độ trong không gian - Tọa độ của điểm, véc-tơ - Phương trình mặt phẳng và đường thẳng - Phương trình mặt cầu PHẦN III: ĐẠI SỐ & GIẢI TÍCH CHƯƠNG 8: Tổ hợp - Xác suất - Công thức khai triển nhị thức Newton - Các quy tắc đếm - Xác suất CHƯƠNG 9: Dãy số - Cấp số cộng và cấp số nhân - Cấp số cộng, cấp số nhân PHẦN IV: HÌNH HỌC CHƯƠNG 10 - Góc, khoảng cách Đây là tài liệu hữu ích giúp học sinh ôn thi THPT Quốc gia môn Toán một cách hiệu quả và nâng cao kiến thức của mình. Mong rằng tài liệu sẽ giúp đỡ các bạn trong quá trình ôn tập và đạt kết quả cao trong kỳ thi sắp tới.