Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tập hợp biểu diễn số phức - Trần Văn Toàn

Tài liệu số phức do thầy Trần Văn Toàn biên soạn gồm 37 trang với nội dung chủ đạo là các bài toán liên quan đến tập hợp biểu diễn số phức. Tài liệu nêu rõ các tính chất cần nắm để giải quyết các bài toán tìm tập hợp biểu diễn số phức, cùng với các ví dụ minh họa có lời giải chi tiết đi kèm. Ngoài ra, tài liệu còn trình bày một số kiến thức bổ trợ có liên quan. Khái quát nội dung tài liệu tập hợp biểu diễn số phức – Trần Văn Toàn: Chương 1 . Số phức 1.1 Tập hợp biểu diễn số phức.  • Tính chất 1.1. Cho hai số phức z và z1. Gọi M là điểm biểu diễn cho số phức z, A là điểm biểu diễn cho số phức z1. Đại lượng |z − z1| là độ dài đoạn thẳng AM. • Tính chất 1.2. Cho số phức z1 = a + bi, tập hợp các điểm biểu diễn số phức z thoả |z − z1| = R là đường tròn tâm I(a;b), bán kính R. • Tính chất 1.3. Cho các số phức z, z1, z2 thoả |z − z1| = R. Tập hợp biểu diễn của số phức w = z + z2 là đường tròn có tâm là điểm biểu diễn cho số phức z1 + z2 và bán kính bằng R. • Tính chất 1.4. Cho các số phức z, z1, z2 (z2 khác 0), z3 với |z − z1| = R. Tập hợp các điểm biểu diễn cho số phức w = z.z2 + z3 là đường tròn có tâm là điểm biểu diễn cho số phức z1.z2 + z3, bán kính bằng |z2|R. • Tính chất 1.5. Cho các số phức z, z1, z2 (z2 khác 0), z3 với |z − z1| = R. Tìm tập hợp biểu diễn của số phức w = z/z2 + z3 là đường tròn có tâm là điểm biểu diễn cho số phức z1/z2 + z3, bán kính đường tròn bằng R/|z2|. • Tính chất 1.6. Cho hai số phức z, z1 thoả |z − z1| = R. Giá trị lớn nhất của |z| là |z1| + R và giá trị nhỏ nhất của |z| là ||z1| − R|. • Tính chất 1.7. Cho hai số phức z, z1 thoả |z − z1| = R. Giá trị lớn nhất của |z + z2| là |z1 + z2| + R và giá trị nhỏ nhất của |z + z2| là ||z1 + z2| − R|. • Tính chất 1.8. Cho các số phức z, z1 (z1 khác 0), z2 thoả |z.z1 + z2| = R. Giá trị lớn nhất của |z| là (R + |z2|)/|z1|, giá trị nhỏ nhất của |z| là |R −|z2||/|z1|. • Tính chất 1.9. Cho các số phức z, z1 (z1 khác 0), z2 thoả |z.z1 + z2| = R. Giá trị lớn nhất của |z + z3| là R/|z1| + |z4|, giá trị nhỏ nhất của |R/|z1| − |z4||, ở đây z4 = z3 − z2/z1. [ads] • Tính chất 1.10. Cho các số phức z, z1, z2, z3 thoả |z − z1| = |z − z2|. Tìm giá trị nhỏ nhất của môđun số phức w = z + z3. • Tính chất 1.11. Cho đường thẳng ∆ có phương trình ax + by + c = 0 và hai điểm C(x1, y1), D(x2, y2). Đặt f (x, y) = ax + by + c. Ta có: 1) C và D ở cùng phía của ∆ khi và chỉ khi (ax1 + by1 + c)(ax2 + by2 + c) > 0. 2) C và D ở khác phía của ∆ khi và chỉ khi (ax1 + by1 + c)(ax2 + by2 + c) < 0. • Tính chất 1.12. Cho các số phức z, z1, z2, z3, z4 thoả |z − z1| = |z − z2|. Tìm giá trị nhỏ nhất của w = |z − z3| + |z − z4|. • Tính chất 1.13. Cho đường tròn (C) và hai điểm A, B cố định thuộc (C). Điểm M trên (C) sao cho MA + MB: 1) nhỏ nhất khi và chỉ khi M trùng với A hay M trùng với B. 2) lớn nhất khi M là một trong hai giao điểm của đường trung trực đoạn AB với đường tròn (C). • Tính chất 1.14. Cho hai số phức z, z1 thoả |z − z1| + |z + z1| = k. Giá trị lớn nhất của |z| là k/2 và giá trị nhỏ nhất của |z| là √(k^2/4 − |z1|^2). • Tính chất 1.15. Cho hai số phức z, z1 thoả m|z − z1| + n|z + z1| = k. Tìm giá trị lớn nhất của và giá trị nhỏ nhất |z|. • Tính chất 1.16. Cho (C) là đường tròn ngoại tiếp hình vuông ABCD và M là điểm trên (C). Tìm giá trị lớn nhất và giá trị nhỏ nhất của tổng S = AM + BM + CM + DM. • Tính chất 1.17. Với hai số phức z1, z2 tuỳ ý, ta có: 1) |z1 + z2|^2 +|z1 − z2|^2 = 2(|z1|^2 + |z2|^2). 2) (|z1| + |z2|)^2 ≤ |z1 + z2|^2 + |z1 − z2|^2. Dấu đẳng thức xảy ra khi và chỉ khi |z1| = |z2|. 1.2 Vị trí tương đối của đường thẳng và đường tròn. Chương 2 . Tiếp tuyến 2.1 Hàm phân thức. 2.2 Hàm bậc ba.

Nguồn: toanmath.com

Đọc Sách

Số phức trong các đề thi thử THPT Quốc gia môn Toán
Tài liệu gồm 541 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm chuyên đề số phức có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Giải tích 12 chương 4 (số phức) và ôn thi THPT Quốc gia môn Toán. Trích dẫn tài liệu số phức trong các đề thi thử THPT QG môn Toán: + Xét các số phức z thỏa mãn (z + 2i)(z‾ + 2) là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là? + Gọi S là tập hợp các số phức thỏa mãn |z − 1| = √34 và |z + 1 + mi| = |z + m + 2i|, trong đó m ∈ R. Gọi z1, z2 là hai số phức thuộc S sao cho |z1 − z2| lớn nhất, khi đó giá trị của |z1 + z2| bằng? [ads] + Cho số phức z thỏa mãn |z − 1| = |z − 2 + 3i|. Tập hợp các điểm biểu diễn số phức z là? A. Đường tròn tâm I(1; 2), bán kính R = 1. B. Đường thẳng có phương trình 2x − 6y + 12 = 0. C. Đường thẳng có phương trình x − 3y − 6 = 0. D. Đường thẳng có phương trình x − 5y − 6 = 0. + Cho các mệnh đề: (I) Số phức z = 2i là số thuần ảo. (II) Nếu số phức z có phần thực là a, số phức z0 có phần thực là a0 thì số phức z · z0 có phần thực là a·a0. (III) Tích của hai số phức z = a + bi (a, b ∈ R) và z0 = a0 + b0i (a, b ∈ R) là số phức có phần ảo là ab0 + a0b. Số mệnh đề đúng trong ba mệnh đề trên là? + Trong mặt phẳng tọa độ Oxy, gọi M, N, P lần lượt là các điểm biểu diễn các số phức z1 = 1 + i, z2 = 8 + i, z3 = 1 − 3i. Khẳng định nào sau đây là một mệnh đề đúng? A. Tam giác MNP cân, không vuông. B. Tam giác MNP đều. C. Tam giác MNP vuông, không cân. D. Tam giác MNP vuông cân.
Trắc nghiệm số phức có giải chi tiết trong các đề thi thử Toán 2018
Sau kỳ thi THPT Quốc gia 2018 môn Toán, lượng đề thi thử Toán và các tài liệu trắc nghiệm từ các trường THPT và sở GD – ĐT là rất lớn, từ nguồn đề này, quý thầy, cô trên cả nước đã tiến hành phân loại chủ đề câu hỏi, phân loại mức độ nhận thức và giải chi tiết để tạo ra những tài liệu chất lượng, phục vụ cho năm học và kỳ thi kế tiếp, trong số đó không thể thiếu chuyên đề số phức, một chủ đề quan trong của kỳ thi THPTQG môn Toán.
Hướng dẫn giải một số câu hỏi số phức khó trong các đề thi thử - Lê Hồng Quốc
Tài liệu gồm 22 trang tuyển tập 44 bài toán trắc nghiệm số phức hay và khó trong các đề thi thử THPT Quốc gia môn Toán, các bài toán được phân tích và giải chi tiết bằng nhiều phương pháp khác nhau. Trích dẫn tài liệu : + Gọi (H) là hình biểu diễn tập hợp các số phức z trong mặt phẳng tọa đọ Oxy để |2z – z¯| ≤ 3 số phức z có phần thực không âm. Tính diện tích hình (H). + Gọi M là điểm biểu diễn số phức w = (z – z¯ + 1)/z^2, trong đó z là số phức thỏa mãn (1 – i)(z + 2i) = 2 – i + 3z. Gọi N là điểm trong mặt phẳng sao cho (vtOx, vtON) = 2α, trong đó α = (vtOx, vtOM) là góc tạo thành khi quay tia Ox tới vị trí của tia OM. Điểm N nằm ở góc phầ tư nào? [ads] A. Góc phần tư thứ nhất B. Góc phần tư thứ tư C. góc phần tư thứ ba D. Góc phần tư thứ hai + Cho số phức z1 thỏa |z1 – 2|^2 + |z1 + i|^2 = 1 và số phức z2 thỏa |z – 4 – i| = √5. Tìm giá trị nhỏ nhất của |z1 – z2|.
Chuyên đề trắc nghiệm số phức - Ngô Nguyên
Tài liệu chuyên đề trắc nghiệm số phức gồm 98 trang được biên soạn bởi tác giả Ngô Nguyên với nội dung bao gồm lý thuyết, phân dạng toán, ví dụ minh họa có lời giải và bài tập trắc nghiệm số phức. Khái quát nội dung tài liệu chuyên đề trắc nghiệm số phức: Tóm tắt lí thuyết Các dạng bài tập + Chủ đề 1. Các phép toán trên số phức I. Phương pháp giải và bài tập có hướng dẫn II. Bài tập tự luyện 1. Phép toán trên số phức – số phức liên hợp – nghịch đảo 2. Tìm phần thực phần ảo của số phức 3. Tìm module của số phức 4. Tìm số phức thỏa mãn biểu thức cho trước 5. Một số dạng khác + Chủ đề 2. Căn bậc hai của số phức I. Phương pháp giải và bài tập có hướng dẫn II. Bài tập tự luyện [ads] + Chủ đề 3. Phương trình bậc hai trên tập số phức I. Phương pháp giải và bài tập có hướng dẫn II. Bài tập tự luyện + Chủ đề 4. Tìm tập hợp điểm biểu diễn số phức z I. Phương pháp giải và bài tập có hướng dẫn II. Bài tập tự luyện + Chủ đề 5. Bài toán GTLN – GTNN trên tập số phức I. Phương pháp giải và bài tập có hướng dẫn II. Bài tập tự luyện + Chủ đề 6. Dạng lượng giác của số phức và ứng dụng I. Phương pháp giải và bài tập có hướng dẫn II. Bài tập tự luyện + Chủ đề 7. Một số dạng toán chứng minh về số phức I. Phương pháp giải và bài tập có hướng dẫn II. Bài tập tự luyện