Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL Toán 12 năm học 2018 - 2019 trường THPT Lưu Đình Chất - Thanh Hóa lần 1

Tiếp nối series đề thi thử THPT Quốc gia môn Toán năm 2019, giới thiệu đến thầy, cô và các em học sinh lớp 12 đề thi KSCL Toán 12 năm học 2018 – 2019 trường THPT Lưu Đình Chất – Thanh Hóa lần 1, đề không chỉ giới hạn ở việc kiểm tra lại các kiến thức Toán 12 các em vừa được học, mà còn chứa các bài toán có nội dung Toán lớp 10 và lớp 11 để các em củng cố lại, rèn luyện nâng cao kỹ năng giải Toán để hướng đến kỳ thi THPT Quốc gia, đề thi gồm 04 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, yêu cầu thí sinh làm bài trong thời gian 90 phút, kỳ thi được diễn ra vào ngày Chủ Nhật, 25/11/2018, đề thi có đáp án đầy đủ các mã đề. Trích dẫn đề thi KSCL Toán 12 năm học 2018 – 2019 trường THPT Lưu Đình Chất – Thanh Hóa lần 1 : + Cho hình chóp đều, chọn mệnh đề sai trong các mệnh đề sau: A. Chân đường cao hạ từ đỉnh của hình chóp đều trùng với tâm của đa giác đáy. B. Đáy của hình chóp đều là đa giác đều. C. Các mặt bên của hình chóp đều là những tam giác cân. D. Tất cả các cạnh của hình chóp đều bằng nhau. [ads] + Trong các phát biểu sau, phát biểu nào không đúng. A. Thể tích khối lăng trụ có diện tích đáy là S và chiều cao h là V = Sh.. B. Khối hộp chữ nhật có ba kích thước là a, b, c có thể tích là V = abc. C. Khối lập phương có cạnh bằng a có thể tích là V = a^3. D. Thể tích khối chóp có diện tích đáy là S và chiều cao h là V = Sh. + Trong không gian cho ba đường thẳng phân biệt a, b, c. Khẳng định nào sau đây đúng? A. Nếu a//b và c ⊥ a thì c ⊥ b. B. Nếu góc giữa a và c bằng góc giữa b và c thì a//b. C. Nếu a và b cùng vuông góc với c thì a//b. D. Nếu a và b cùng nằm trong mp (α) // c thì góc giữa a và c bằng góc giữa b và c.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Cà Mau
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 20 tháng 05 năm 2023; đề thi có đáp án mã đề 101 105 109 113 117 121 102 106 110 114 118 122 103 107 111 115 119 123 104 108 112 116 120 124. Trích dẫn đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Cà Mau : + Trên tập số phức, xét phương trình z2 – 2z + 1 – m = 0 (m là tham số thực). Gọi S là tập hợp các giá trị của tham số m để phương trình đã cho có nghiệm thỏa mãn |z| = 3. Tổng các phần tử của S bằng? + Trong không gian Oxyz, cho mặt cầu (S): (x + 3)2 + (y − 2)2 + (z − 2)2 = 27. Gọi mặt phẳng (P): x + by + 2z + c = 0 đi qua hai điểm A(0;0;−2), B(–4;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Khi đó a2 + b2 + c2 bằng? + Cho f(x) là đa thức bậc 5 có đồ thị hàm số f'(x) như hình vẽ bên dưới. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số g(x) = f(x) – x + a trên đoạn [-3/2;1]. Có bao nhiêu giá trị nguyên của a thuộc [-2023;2023] để 9m2 – 320M > 0?
Đề thi thử TN THPT 2023 môn Toán lần 2 trường THPT Hai Bà Trưng - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 2 trường THPT Hai Bà Trưng, tỉnh Thừa Thiên Huế (mã đề 132). Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 2 trường THPT Hai Bà Trưng – TT Huế : + Trong không gian Oxyz, cho đường thẳng 1 1 2 1 1 x y z. Hai điểm M N thay đổi, lần lượt nằm trên các mặt phẳng P x 2 0 Q z 2 0 sao cho trung điểm K của đoạn thẳng MN luôn thuộc đường thẳng. Giá trị nhỏ nhất của độ dài đoạn thẳng MN thuộc khoảng nào dưới đây? + Cho hàm số y f x có đạo hàm liên tục, nhận giá trị dương trên 0 f 1 1 và thỏa mãn 3 3 4 x f x f x x f x x 2 2 0. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y f x trục hoành và hai đường thẳng x x 1 4. + Cho khối nón N có đỉnh S tâm đường tròn đáy là O góc ở đỉnh bằng 120. Một mặt phẳng P đi qua S cắt hình nón N theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 4. Tính thể tích V của khối nón N.
Đề thi thử TN THPT 2023 môn Toán lần 2 trường chuyên Biên Hòa - Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần 2 trường THPT chuyên Biên Hòa, tỉnh Hà Nam; đề thi có đáp án mã đề 101. Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 2 trường chuyên Biên Hòa – Hà Nam : + Cho hai mặt cầu 2 2 2 Sx y z 1 3 36 và 2 2 Sx y z 1 1 81. Gọi d là đường thẳng tiếp xúc với cả hai mặt cầu trên và cách điểm M 4 1 7 một khoảng lớn nhất. Gọi E mn p là giao điểm của d với mặt phẳng P xyz 2 17 0. Biểu thức T mn p có giá trị bằng? + Cho hàm số 3 2 f x x mx nx 2 2022 với m n là các số thực. Biết hàm số gx f x f x f x có hai giá trị cực trị là 2023 e 12 và e 12. Diện tích hình phẳng giới hạn bởi các đường 12 f x y g x và y 1 bằng? + Cho các số thực b c sao cho phương trình 2 z bz c 0 có hai nghiệm phức 1 2 z z thỏa mãn 1z i 43 1 và 2 z i 86 4. Mệnh đề nào sau đây đúng?
Đề thi thử TN THPT 2023 môn Toán lần 2 trường THPT Đông Hà - Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 2 trường THPT Đông Hà, tỉnh Quảng Trị; đề thi có đáp án mã đề 111 112 113 114. Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 2 trường THPT Đông Hà – Quảng Trị : + Để chuẩn bị kỷ niệm 50 năm ngày thành lập trường THPT Đông Hà, nhà trường thành lập hai tổ học sinh để đón tiếp các vị đại biểu. Tổ một gồm 3 học sinh Khối 12 và 2 học sinh Khối 11, tổ hai gồm 3 học sinh Khối 12 và 4 học sinh Khối 10. Chọn ngẫu nhiên từ mỗi tổ ra 2 học sinh, tính xác suất để trong 4 học sinh được chọn có đủ học sinh của cả ba Khối. + Trong không gian Oxyz, cho mặt phẳng P x y z 2 1 0 và hai điểm A 5 2 1 B 3 2 1. Điểm M thuộc mặt phẳng P sao cho các đường thẳng AM và BM luôn tạo với P các góc bằng nhau. Biết rằng M luôn thuộc một đường tròn C cố định có tâm I a b c. Tính T a b c 2. + Cho hình trụ có hai đáy là hai hình tròn O R và O R và AB là một dây cung của đường tròn O R sao cho tam giác O AB là tam giác đều. Mặt phẳng O AB tạo với mặt phẳng chứa đường tròn O R một góc 60. Biết R a tính khoảng cách từ O đến mặt phẳng O AB.