Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Sơn La

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Sơn La Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Sơn La Đề thi tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Sơn La Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Sơn La tổ chức là một trong những cột mốc quan trọng trong hành trình học tập của học sinh Sơn La. Đây là bước quan trọng đánh dấu sự hoàn thiện từ khối trung học cơ sở và cũng là căn cứ để xét tuyển vào các trường Trung học Phổ thông trên địa bàn. Một trong những môn thi quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Nội dung của đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Sơn La đã được công bố. Trong đó, có các câu hỏi đa dạng và phong phú, từ những bài toán cơ bản đến những bài toán phức tạp, đòi hỏi sự logic, tư duy và kiến thức sâu rộng. Học sinh cần phải rèn luyện kỹ năng giải bài toán và ôn tập kiến thức một cách chặt chẽ để đạt kết quả cao trong kỳ thi này. Với nội dung đa dạng và phong phú như vậy, đề thi tuyển sinh Toán sở GD&ĐT Sơn La năm 2019 – 2020 đã thu hút được sự quan tâm của đông đảo thầy cô giáo, phụ huynh và học sinh. Việc giải đề này không chỉ giúp học sinh ôn tập kiến thức mà còn phản ánh khả năng giải bài toán, tư duy logic và sự linh hoạt trong tư duy của từng em. Hy vọng rằng những kiến thức và kỹ năng mà các em học sinh có được từ việc ôn tập và giải đề thi tuyển sinh này sẽ giúp họ tự tin và thành công trong kỳ thi sắp tới, từ đó tiến xa trên con đường học tập và phát triển bản thân.

Nguồn: sytu.vn

Đọc Sách

Đề tham khảo môn Toán tuyển sinh lớp 10 năm 2020 - 2021 sở GDĐT Đồng Nai
Thứ Hai ngày 08 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai công bố đề tham khảo môn Toán tuyển sinh lớp 10 THPT năm học 2020 – 2021, giúp học sinh lớp 9 tham khảo, để chuẩn bị cho kỳ thi sắp tới. Đề tham khảo môn Toán tuyển sinh lớp 10 năm 2020 – 2021 sở GD&ĐT Đồng Nai gồm 06 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề tham khảo môn Toán tuyển sinh lớp 10 năm 2020 – 2021 sở GD&ĐT Đồng Nai : + Cho hình vuông MNPQ có MN = 4a, với 0 < a thuộc R. Tính theo a diện tích xung quanh và thể tích của hình trụ tạo bởi hình vuông MNPQ quay quanh đường thẳng MN. [ads] + Cho phương trình 2x^2 – 6x – 1 = 0 có hai nghiệm là x1 và x2. Tính P = |x1^3 – x2^3|. Lập một phương trình bậc hai một ẩn có hai nghiệm là x1 – 2×2^2 và x2 – 2×1^2. + Một chuyền may chỉ may một loại áo giống nhau và có kế hoạch may xong 4500 áo trong một thời gian quy định, với số áo may được trong mỗi ngày bằng nhau. Để hoàn thành sớm kế hoạch, mỗi ngày chuyền đã may nhiều hơn 400 áo so với số áo phải may trong một ngày theo kế hoạch, vì thế chuyền đã may xong 4500 áo sớm hơn kế hoạch 4 ngày. Tính số áo mỗi ngày chuyền may đã may trong thực tế.
Tuyển tập đề tuyển sinh lớp 10 môn Toán sở GDĐT Hà Nội (từ 1998 đến 2020)
Tài liệu gồm 68 trang, được tổng hợp và biên soạn bởi thầy Trịnh Văn Luân, tuyển tập 21 đề tuyển sinh vào lớp 10 môn Toán sở GD&ĐT Hà Nội (từ năm 1998 đến năm 2020), có đáp án và lời giải chi tiết. Đề số 1. Đề thi vào 10 thành phố Hà Nội năm 1998. Đề số 2. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 1999-2000. Đề số 3. Đề thi vào 10 thành phố Hà Nội năm 2000. Đề số 4. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2001-2002. Đề số 5. Đề thi vào 10 thành phố Hà Nội năm 2002. Đề số 6. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2003-2004. Đề số 7. Đề thi Toán vào lớp 10 năm học 2004-2005, Hà Nội. Đề số 8. Đề thi vào lớp 10, Sở GD&ĐT Hà Nội năm 2006. Đề số 9. Đề thi vào lớp 10, Sở GD&ĐT Hà Nội năm 2007. Đề số 10. Đề thi vào 10, Sở GD&ĐT Hà Nội năm 2008. Đề số 11. Đề thi vào lớp 10, Sở GDHN, năm 2009 – 2010. Đề số 12. Đề thi vào lớp 10 – TP Hà Nội năm 2010. Đề số 13. Đề tuyển sinh vào 10 SGD Hà Nội 2011. Đề số 14. Đề thi vào lớp 10, SGD Hà Nội 2012. Đề số 15. Đề thi vào lớp 10, SGD Hà Nội 2013. Đề số 16. Đề thi vào lớp 10, SGD Hà Nội 2014. Đề số 17. Đề thi vào lớp 10, SGD Hà Nội 2015. Đề số 18. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2016-2017. Đề số 19. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2017-2018. Đề số 20. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2018-2019. Đề số 21. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2019-2020.
Đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GDĐT Tiền Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tổng hợp đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang từ năm 2011 đến năm 2020, nhằm giúp các em ôn tập để chuẩn bị cho kỳ thi vào lớp 10 môn Toán sắp tới. Trích dẫn đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang: + Cho đường tròn (O;R) đường kính AB = 2R, điểm M thuộc (O) (M khác A và B). Trên tia AB lấy điểm C sao cho AC = 3R. Đường thẳng (d) vuông góc với AB tại C cắt AM tại E. 1. Chứng minh tứ giác BCEM nội tiếp. 2. Tính AM.AE theo R. 3. Lấy N thuộc (O) (N khác A, B, M), đường thẳng AN cắt CE tại F. Chứng minh MNEF nội tiếp. [ads] + (Giải bài toán sau bằng cách lập phương trình bậc hai) Quãng đường AB dài 90 km, có hai ôtô khởi hành cùng một lúc. Ôtô thứ nhất đi từ A đến B, ô-tô thứ hai đi từ B đến A. Sau 1 giờ hai xe gặp nhau và tiếp tục đi. Xe ôtô thứ hai tới A trước xe thứ nhất tới B là 27 phút. Tính vận tốc mỗi xe. + Trong mặt phẳng Oxy, cho parabol (P): y = 1/4×2 và đường thẳng (d): y = mx − m − 2. 1. Với m = 1, vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ. 2. Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt A, B khi m thay đổi. 3. Xác định m để trung điểm của đoạn thẳng AB có hoành độ bằng 1.
Đề minh họa thi vào 10 môn Toán năm 2020 - 2021 sở GDĐT Thái Nguyên
Thứ Sáu ngày 15 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Nguyên công bố đề minh họa kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021, nhằm giúp các em học sinh lớp 9 tại tỉnh Thái Nguyên chuẩn bị cho kỳ thi vượt cấp quan trọng sắp tới. Đề minh họa thi vào 10 môn Toán năm 2020 – 2021 sở GD&ĐT Thái Nguyên có dạng tự luận, đề gồm 01 trang với 10 bài toán, thời gian làm bài 120 phút. Trích dẫn đề minh họa thi vào 10 môn Toán năm 2020 – 2021 sở GD&ĐT Thái Nguyên : + Cho đường tròn (O), đường kính AB. Lấy điểm C nằm trên đường tròn (C khác A, C khác B). Các tiếp tuyến của đường tròn (O) tại A và tại C cắt nhau tại D. Gọi H là hình chiếu vuông góc của C trên đường thẳng AB. I là giao điểm của BD và CH. Chứng minh rằng Cl = HI. [ads] + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Vẽ tiếp tuyến chung CD của hai đường tròn (C thuộc (O), D thuộc (O’)). Lấy hai điểm E, F lần lượt thuộc các đường tròn (O), (O’) sao cho ba điểm E, B, F thẳng hàng (B nằm giữa E và F, E khác B, F khác B) và EF song song với CD. Gọi P, Q lần lượt là giao điểm của các cặp đường thẳng DA với EF và CA với EF. K là giao điểm của hai đường thẳng EC và FD. Chứng minh rằng: a. Tam giác KCD = tam giác BCD. b. KP = KQ. + Người ta đổ thêm 100 g nước vào một dung dịch chứa 20 g muối thì nồng độ của dung dịch giảm đi 10%. Hỏi trước khi đổ thêm nước thì dung dịch chứa bao nhiêu nước?