Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Phú Yên

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Phú Yên Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán THCS cấp tỉnh 2022 - 2023 sở GD&ĐT Phú Yên Đề thi chọn học sinh giỏi Toán THCS cấp tỉnh 2022 - 2023 sở GD&ĐT Phú Yên Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Phú Yên. Kỳ thi sẽ diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Đề thi có các câu hỏi sau: 1. Cho đường tròn (O) đường kính AB = 2R, C là trung điểm của OA, M là một điểm thuộc (C) sao cho MA > MB. Đường thẳng MC cắt (O) tại D (D khác M), đường thẳng qua D và vuông góc với AB cắt (O) tại E (E khác D), đường thẳng ME cắt đường thẳng AB tại F. - a) Chứng minh AF = AO - b) Đường thẳng qua M song song với DE cắt AB tại H và cắt (O) tại điểm thứ hai N. Chứng minh rằng ba điểm F, D, N thẳng hàng. - c) Trong trường hợp EF = MC, tính độ dài đoạn thẳng CH theo R. 2. Cho tam giác ABC vuông tại A, đường cao AD. Gọi E, F, G lần lượt là tâm đường tròn nội tiếp các tam giác ABD, ACD, ABC. Gọi H là giao điểm của hai đường thẳng AG và EF. Chứng minh rằng HG HA HE HF. Đây là những câu hỏi thú vị đòi hỏi sự tư duy logic và sự khéo léo trong giải quyết vấn đề. Chúc các em học sinh có kỳ thi thành công và đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2015 - 2016 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho các số thực x y z thỏa mãn đồng thời các điều kiện 2 22 x y z xy yz zx và 2015 2015 2015 2016 xyz 3. Tìm x y z. + Cho x, y là hai số không âm thỏa mãn điều kiện 2 2 xy x y 1. Tính giá trị của biểu thức: 2 2 Tx y y x 1 1. + Cho đường tròn O R và đường thẳng d cố định, d không có điểm chung với đường tròn. Gọi M là điểm thuộc đường thẳng d. Qua M kẻ hai tiếp tuyến MA MB tới đường tròn (A B là các tiếp điểm). Từ O kẻ OH vuông góc với đường thẳng d H d. Nối A với B AB cắt OH tại K và cắt OM tại I. Tia OM cắt O R tại E. a) Chứng minh rằng năm điểm AOBHM cùng thuộc một đường tròn. b) Chứng minh rằng OK OH OI OM. c) Chứng minh E là tâm đường tròn nội tiếp tam giác MAB. d) Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK đạt giá trị lớn nhất.
Đề học sinh giỏi huyện Toán 9 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho biểu thức x x x x A 2 4 3 2 với x 0 1 x. a) Rút gọn biểu thức A. b) Tìm giá trị lớn nhất của biểu thức A. + Cho hàm số bậc nhất 2 y 1 3m x 5m 2 (1) và đường thẳng d: y 2x 3. a) Tìm giá trị của tham số m để hàm số (1) là hàm số đồng biến trên. b) Tìm giá trị của tham số m để đồ thị hàm số 2 y 1 3m x 5m 2 và đường thẳng d cắt nhau tại một điểm trên trục tung. c) Tìm trên đường thẳng d những điểm có tọa độ thoả mãn đẳng thức 2 2 x y xy 2 40. + Cho m là một số nguyên. Chứng minh rằng: a) 5 m m chia hết cho 30. b) Biểu thức 532 7 30 6 2 10 mmm m P là một số nguyên.
Đề học sinh giỏi huyện Toán 9 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho hai đường thẳng y = 6 + 2x và y = 3 – x. a. Tìm toạ độ giao điểm M của hai đường thẳng trên. b. Gọi giao điểm của hai đường thẳng trên với trục hoành theo thứ tự là A và B. Tính diện tích tam giác MAB. + Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn. b) Chứng minh: MA2 = MD.MB c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH. + Cho 4 số thực a b c d thỏa mãn điều kiện: ac 2.(b + d) Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai: a 4b 2 c 4d.
Đề học sinh giỏi huyện Toán 9 năm 2012 - 2013 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác nhọn ABC BC a CA b AB c. Chứng minh rằng: 222 a b c bc cosA. + Cho nửa đường tròn (O) đường kính BC. Trên tia đối của tia CB lấy điểm A, qua A kẻ tiếp tuyến AF với đường tròn (O) ( F là tiếp điểm). Tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D (tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)). Gọi H là giao điểm của BF với DO; K là giao điểm thứ hai của DC với nửa đường tròn (O). a) Chứng minh rằng AO.AB = AF.AD. b) Chứng minh DHK DCO. c) Kẻ OM vuông góc với BC (M thuộc đoạn AD). Chứng minh rằng 1 BD DM DM AM. + Cho hai số thực dương x, y thay đổi thỏa mãn điều kiện 3 4 x y. Tìm giá trị nhỏ nhất của biểu thức 1 1 A x xy.