Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPTQG 2019 – 2020 lớp 10 môn Toán lần 1 trường Ngô Sĩ Liên – Bắc Giang

Nội dung Đề thi thử THPTQG 2019 – 2020 lớp 10 môn Toán lần 1 trường Ngô Sĩ Liên – Bắc Giang Bản PDF Nhằm giúp các em học sinh khối 10 sớm tiếp cận và rèn luyện kiến thức để hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, trường THPT Ngô Sĩ Liên – Bắc Giang tổ chức kỳ thi thử THPT Quốc gia lần 1 năm học 2019 – 2020 môn Toán lớp 10. Đề thi thử THPTQG 2019 – 2020 Toán lớp 10 lần 1 trường THPT Ngô Sĩ Liên – Bắc Giang mã đề 896, đề gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề nhằm kiểm tra kiến thức Toán lớp 10 đã học, đề thi có đáp án. Trích dẫn đề thi thử THPTQG 2019 – 2020 Toán lớp 10 lần 1 trường Ngô Sĩ Liên – Bắc Giang : + Cho tứ giác ABCD cố định và điểm M di chuyển thỏa mãn |MA + MB + MC| = |MB + MC + MD|. Tập hợp điểm M là: A. đường trung trực của đoạn GG’, với G, G’ lần lượt là trọng tâm tam giác ABC, tam giác BCD. B. đường tròn tâm G, với G là trọng tâm tam giác ABC. C. đường tròn tâm G, với G là trọng tâm tam giác BCD. D. đường trung trực của đoạn GG’, với G, G’ lần lượt là trọng tâm tam giác ABC, tam giác ACD. [ads] + Hai tổ của một lớp 10 có 21 học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn, trong đó có 14 học sinh học giỏi môn Toán, 12 học sinh học giỏi môn Văn. Khi đó hai tổ trên có số học sinh học giỏi cả hai môn Toán và Văn là? + Cho hàm số y = -2x^2 + 8x – 2 có đồ thị là (P). Chọn khẳng định sai? A. (P) đi qua điểm M(-1;-12). B. Giá trị lớn nhất của hàm số bằng 2. C. Trục đối xứng của (P) là đường thẳng x = 2. D. (P) nghịch biến trên (2;+∞). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi KSCL Toán 10 lần 3 năm 2019 - 2020 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
Ngày … tháng 05 năm 2020, trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 năm học 2019 – 2020 lần thi thứ ba, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 (HK2). Đề thi KSCL Toán 10 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc mã đề 066 gồm có 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 10 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Cho hai điểm B và C phân biệt. Tập hợp những điểm M thỏa mãn CM.CB = CM^2 thuộc: A. Một đường khác không phải đường tròn. B. Đường tròn (B;BC). C. Đường tròn (C;BC). D. Đường tròn đường kính BC. + Cho hai bất phương trình x^2 – m(m^2 + 1)x + m^4 < 0 (1) và x^2 + 4x + 3 > 0 (2). Các giá trị của tham số m sao cho nghiệm của bất phương trình (1) đều là nghiệm của bất phương trình (2) là? + Cho hệ phương trình: 2x – y = 2 – a và x + 2y = a + 1. Các giá trị thích hợp của tham số a để tổng bình phương hai nghiệm của hệ phương trình đạt giá trị nhỏ nhất? + Cho tam giác ABC, gọi M là trung điểm của BC và G là trọng tâm của tam giác ABC. Câu nào sau đây đúng? + Gọi H là trực tâm tam giác ABC, phương trình các đường thẳng chứa các cạnh và đường cao tam giác là: AB: 7x – y + 4 = 0; BH: 2x + y – 4 = 0; AH: x – y -2 = 0. Phương trình đường thẳng chứa đường cao CH của tam giác ABC là?
Đề kiểm tra chuyên đề Toán 10 lần 2 năm 2019 - 2020 trường Quang Hà - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra chuyên đề Toán 10 lần 2 năm học 2019 – 2020 trường THPT Quang Hà – Vĩnh Phúc; đề thi được biên soạn theo dạng tự luận với 09 câu hỏi và bài toán, bao quát nội dung Toán 10 từ đầu năm học đến thời điểm diễn ra kỳ thi, thời gian làm bài thi là 120 phút (không tính thời gian giáo viên phát đề), đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề kiểm tra chuyên đề Toán 10 lần 2 năm 2019 – 2020 trường Quang Hà – Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho 3 điểm A(1;2); B(-2;6); C(4;4). a/ Chứng minh 3 điểm A, B, C không thẳng hàng. b/ Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. + Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn: BD = 2/3.BC, AE = 1/4.AC. Điểm K trên đoạn thẳng AD sao cho B, K, E thẳng hàng. Tìm tỉ số AD/AK. + Xác định Parabol y = ax^2 + bx + c biết rằng Parabol đó đi qua điểm A(0;2) và đỉnh I(1;1). + Cho phương trình x^2 + 3x + m = 0. Tìm m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn: x1^2 + x2^2 = 17. + Xác định a, b để đồ thị hàm số y = ax + b đi qua hai điểm A(0;-3) và B(2;5).
Đề ôn tập Toán 10 tháng 03 năm 2020 trường THPT chuyên Hà Nội Amsterdam
Do ảnh hưởng của tình hình dịch bệnh vi-rút Corona (COVID-19), học sinh khối 10 trường THPT chuyên Hà Nội – Amsterdam vẫn chưa thể đi học trở lại từ sau kỳ nghỉ lễ Tết Nguyên Đán 2020, điều này ảnh hưởng lớn đến việc tiếp thu kiến thức môn Toán 10. Để giúp các em có thể tự ôn tập tại nhà, tổ Toán – Tin học trường THPT chuyên Hà Nội – Amsterdam đã biên soạn bộ đề ôn tập môn Toán 10 giai đoạn tháng 03 năm 2020. Đề ôn tập Toán 10 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam gồm có 07 trang với 03 đề, chọn lọc các câu hỏi trắc nghiệm và tự luận từ cơ bản đến nâng cao giúp học sinh khối 10 tự ôn luyện. Trích dẫn đề ôn tập Toán 10 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam : + Cho ba số a, b, c thoả mãn đồng thời a + b – c > 0, a + b – c > 0, a + b – c > 0. Để ba số a, b, c là ba cạnh của một tam giác thì cần thêm đều kiện gì? A. Chỉ cần một trong ba số a, b, c dương. B. Không cần thêm điều kiện gì. C. Cần có cả a, b, c ≥ 0. D. Cần có cả a, b, c > 0. [ads] + Cho phương trình: Ax + By + C = 0 với A^2 + B^2 > 0. Mệnh đề nào sau đây sai? A. B = 0 thì đường thẳng (1) song song hay trùng với y’Oy. B. Điểm M(x0;y0) thuộc đường thẳng (1) khi và chỉ khi Ax0 + By0 + C khác 0. C. (1) là phương trình tổng quát của đường thẳng có vectơ pháp tuyến là n = (A;B). D. A = 0 thì đường thẳng (1) song song hay trùng với x’Ox. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có E, F là hình chiếu vuông góc của B, C lên đường phân giác trong vẽ từ A, gọi K là giao điểm của các đường thẳng FB và CE. Tìm tọa độ điểm A có hoành độ nguyên nằm trên đường thẳng d có phương trình 2x + y + 3 = 0 biết K(-1;-1/2); E(2,-1).