Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 năm 2023 - 2024 cụm huyện Yên Dũng - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa môn Toán 11 năm học 2023 – 2024 cụm trường THPT huyện Yên Dũng, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm mã đề 107 108 109 110 111. Trích dẫn Đề thi HSG Toán 11 năm 2023 – 2024 cụm huyện Yên Dũng – Bắc Giang : + Một anh sinh viên T nhập học đại học vào tháng năm . Bắt đầu từ tháng năm 2023, cứ vào ngày mồng một hàng tháng anh vay ngân hàng triệu đồng với lãi suất cố định /tháng. Lãi tháng trước được cộng vào số nợ để tiếp tục tính lãi cho tháng tiếp theo (lãi kép). Vào ngày mồng một hàng tháng kể từ tháng năm 2025 về sau anh không vay ngân hàng nữa và anh còn trả được cho ngân hàng triệu đồng do việc làm thêm. Hỏi ngay sau khi kết thúc ngày anh ra trường anh còn nợ ngân hàng bao nhiêu tiền (làm tròn đến hàng nghìn đồng)? + Lớp 11A có 50 học sinh, trong đó có 30 học sinh thích học môn Toán, 28 học sinh thích học môn Văn và 6 học sinh không thích học cả Toán và Văn. Chọn ngẫu nhiên một học sinh từ lớp đó. Xác suất để học sinh được chọn chỉ thích học môn Toán mà không thích học môn Văn là? + Một rạp hát có 25 hàng ghế, mỗi hàng có 20 ghế. Trong một buổi biểu diễn ca nhạc, rạp hát đó đã bán được vừa hết số vé tương ứng với số ghế trong rạp hát. Tính số tiền thu được từ việc bán vé, biết rằng giá mỗi vé ở hàng ghế thứ nhất là 500000 đồng và giá vé của hàng ghế sau ít hơn giá vé ở hàng ghế liền trước 15000 đồng.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Ngãi
Nội dung Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Ngãi Bản PDF Chiều thứ Năm ngày 08 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Ngãi tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 11 môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Quảng Ngãi gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.
Đề thi chọn HSG tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Bình (Vòng 1)
Nội dung Đề thi chọn HSG tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Bình (Vòng 1) Bản PDF Thứ Ba ngày 06 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán lớp 11 năm học 2020 – 2021 và chọn đội dự tuyển dự thi chọn HSG Quốc gia môn Toán năm học 2021 – 2022 vòng 1. Đề thi chọn HSG tỉnh Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Quảng Bình (Vòng 1) gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề thi chọn HSG lớp 11 môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc
Nội dung Đề thi chọn HSG lớp 11 môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc Bản PDF Thứ Ba ngày 06 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2020 – 2021. Đề thi chọn HSG Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh
Nội dung Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 năm học 2020 – 2021 sở GD&ĐT Bắc Ninh; đề thi được biên soạn theo dạng đề tự luận, đề gồm 02 trang với 07 bài toán, thời gian làm bài 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có tâm I(1;4), đỉnh A nằm trên đường thẳng có phương trình 2x + y – 1 = 0, đỉnh C nằm trên đường thẳng có phương trình x – y + 2 = 0. Tìm tọa độ các đỉnh của hình vuông đã cho. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tất cả các cạnh bên đều bằng a. Gọi điểm M thuộc cạnh SD sao cho SD = 3SM, điểm G là trọng tâm tam giác BCD. a) Chứng minh rằng MG song song với mp(SBC). b) Gọi (α) là mặt phẳng chứa MG và song với CD. Xác định và tính diện tích thiết diện của hình chóp với mp (α). c) Xác định điểm P thuộc MA và điểm Q thuộc BD sao cho PQ song song với SC. Tính PQ theo a. + Có bao nhiêu số tự nhiên có 8 chữ số, trong đó có hai chữ số lẻ khác nhau và ba chữ số chẵn khác nhau, mà mỗi chữ số chẵn có mặt đúng hai lần. File WORD (dành cho quý thầy, cô):