Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Rút gọn biểu thức đại số và các bài toán liên quan

Bài toán rút gọn biểu thức đại số và các bài toán liên quan là dạng câu hỏi không thể thiếu trong các đề thi tuyển sinh vào lớp 10 môn Toán, đây là bài toán không khó, học sinh có thể làm tốt bài toán này nếu nắm vững các công thức biến đổi. Tài liệu dưới đây sẽ cung cấp cho các em phương pháp giải 12 dạng bài tập rút gọn biểu thức đại số và các bài toán có liên quan. Dạng 1 . Rút gọn biểu thức. Ngoài việc rèn kỹ năng thực hiện các phép tính trong bài toán rút gọn. Học sinh hay quên hoặc thiếu điều kiện xác định của biến x (ĐKXĐ gồm điều kiện để các căn thức bậc hai có nghĩa, các mẫu thức khác 0 và biểu thức chia (nếu có) khác 0). Dạng 2 . Tính giá trị của biểu thức A khi x = m ( với m là số hoặc biểu thức chứa x). Nếu m là biểu thức chứa căn x = m ( bằng số), trước tiên phải rút gọn; nếu m là biểu thức có dạng căn trong căn thường đưa về hằng đẳng thức để rút gọn; nếu m là biểu thức ta phải đi giải phương trình tìm x. Trước khi tính giá trị của biểu thức A, học sinh thường quên xét xem m có thỏa mãn ĐKXĐ hay không rồi mới được thay vào biểu thức đã rút gọn để tính. Dạng 3 . Tìm giá trị của biến x để A = k (với k là hằng số hoặc là biểu thức chứa x). Thực chất đây là việc giải phương trình. Học sinh thường quên khi tìm được giá trị của x không xét xem giá trị x đó có thỏa mãn ĐKXĐ của A hay không. Dạng 4 . Tìm giá trị của biến x để A ≥ k (hoặc A ≤ k, A > k, A < k …) trong đó k là hằng số hoặc là biểu thức chứa x. Thực chất đây là việc giải bất phương trình. Học sinh thường mắc sai lầm khi giải bất phương trình thường dùng tích chéo hoặc sử dụng một số phép biến đổi sai. Dạng 5 . So sánh biểu thức A với một số hoặc một biểu thức. Thực chất đây là việc đi xét hiệu của biểu thức A với một số hoặc một biểu thức rồi so sánh hiệu đó với số 0. [ads] Dạng 6 . Chứng minh biểu thức A ≥ k (hoặc A ≤ k, A > k, A < k) với k là một số. Thực chất đây là việc đưa về chứng minh đẳng thức hoặc bất đẳng thức. Ta xét hiệu A – k rồi xét dấu biểu thức. Dạng 7 . Tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: chia tử thức cho mẫu thức, rồi tìm giá trị của biến x để mẫu thức là ước của phần dư (một số). Học sinh thường quên kết hợp với điều kiên xác định của biểu thức. Dạng 8 . Tìm giá trị của biến x là số thực, số bất kì để biểu thức A có giá trị nguyên. Học sinh thường nhầm lẫn cách làm của dạng này với dạng tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: sử dụng ĐKXĐ để xét xem biểu thức A nằm trong khoảng giá trị nào, rồi tính giá trị của biểu thức A và từ đó tìm giá trị của biến x. Dạng 9 . Tìm giá trị của tham số để phương trình hoặc bất phương trình có nghiệm. Học sinh cần biết cách tìm điều kiện để phương trình hoặc bất phương trình có nghiệm. Dạng 10 . Tìm giá trị của biến x để A = |A| (hoặc A < |A|, A ≥ |A| …). Nếu |A| > A, suy ra A < 0. Nếu |A| = A, suy ra A ≥ 0. Dạng 11 . Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức A. Học sinh cần biết cách tìm cực trị của phân thức ở một số dạng tổng quát. Học sinh cần đưa biểu thức rút gọn A về một trong những dạng sau để tìm cực trị. Học sinh thường mắc sai lầm khi chỉ chứng minh biểu thức A ≥ k (hoặc A ≤ k) chưa chỉ ra dấu bằng nhưng đã kết luận cực trị của biểu thức A. Dạng 12 : Tìm giá trị lớn nhất, giá trị nhỏ nhất của A khi x thuộc N. Học sinh chú ý bài toán thường cho dưới dạng điều kiện xác định x ≥ a, x ≠ b, trong đó a < b. Ta phải tính giá trị với x là các số tự nhiện thuộc [a;b) và trường hợp x là số tự nhiên lớn hơn b.

Nguồn: toanmath.com

Đọc Sách

32 chủ đề học tập Hình học 9
Tài liệu gồm 187 trang, tuyển tập 32 chủ đề học tập Hình học 9. Chương 1 – Chủ đề 1. Hệ thức lượng trong tam giác vuông. Chương 1 – Chủ đề 2. Tỉ số lượng giác của góc nhọn. Chương 1 – Chủ đề 3. Một số hệ thức về cạnh và góc trong tam giác vuông. Chương 1 – Chủ đề 4. Tổng ôn Chương 1. Chương 1 – Chủ đề 5. Kiểm tra khảo sát chất lượng Chương 1. Chương 2 – Chủ đề 1. Sự xác định đường tròn. Chương 2 – Chủ đề 2. Đường kính và dây cung. Chương 2 – Chủ đề 3. Vị trí tương đối của đường thẳng và đường tròn. Chương 2 – Chủ đề 4. Dấu hiệu nhận biết tiếp tuyến của đường tròn. Chương 2 – Chủ đề 5. Tính chất tiếp tuyến cắt nhau. Chương 2 – Chủ đề 6. Luyện tập tính chất hai tiếp tuyến cắt nhau. Chương 2 – Chủ đề 7. Vị trí tương đối của hai đường tròn. Chương 2 – Chủ đề 8 + 9. Tổng ôn Chương 2. Chương 2 – Chủ đề 10. Đề kiểm tra đánh giá và hướng dẫn chi tiết. Chương 3 – Chủ đề 1. Góc ở tâm. Số đo cung. Chương 3 – Chủ đề 2. Liên hệ cung và dây. Chương 3 – Chủ đề 3. Góc nội tiếp. Chương 3 – Chủ đề 4. Góc tạo bởi tiếp tuyến và giây cung. Chương 3 – Chủ đề 5. Góc có đỉnh bên trong đường tròn. Chương 3 – Chủ đề 6. Cung chứa góc. Chương 3 – Chủ đề 7. Tứ giác nội tiếp. Chương 3 – Chủ đề 8. Độ dài đường tròn, cung tròn. Chương 3 – Chủ đề 9. Diện tích hình tròn, hình quạt tròn. Chương 3 – Chủ đề 10. Tổng ôn Chương 3. Chương 3 – Chủ đề 11. Kiểm tra đánh giá ôn tập Chương 3. Chương 4 – Chủ đề 1. Diện tích xung quanh và thể tích của hình trụ. Chương 4 – Chủ đề 2. Diện tích xung quanh và thể tích của hình nón, hình nón cụt. Chương 4 – Chủ đề 3. Diện tích mặt cầu và thể tích hình cầu. Chương 4 – Chủ đề 4. Tổng ôn Chương 4. Chương 4 – Chủ đề 5. Đề kiểm tra Chương 4.
Lý thuyết và phân dạng môn Toán 9 - Nguyễn Ngọc Dũng
Tài liệu gồm 88 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, tổng hợp lý thuyết và phân dạng môn Toán 9. MỤC LỤC : I Đại số 1. Chương 1. Căn bậc hai. Căn bậc ba 2. Bài số 1. Căn bậc hai 2. Bài số 2. Liên hệ giữa phép nhân, phép chia và phép khai phương 5. Bài số 3. Biến đổi, rút gọn biểu thức chứa căn bậc hai 5. Bài số 4. Căn bậc ba 8. Bài số 5. Ôn tập chương 1 9. Chương 2. Hàm số. Hàm số bậc nhất 15. Bài số 1. Hàm số, hàm số bậc nhất 15. Bài số 2. Đường thẳng song song – Đường thẳng cắt nhau 16. Bài số 3. Hệ số góc của đường thẳng y = ax + b (a khác 0) 18. Bài số 4. Các bài tập tổng hợp 20. Bài số 5. Các bài toán thực tế ứng dụng hàm số 21. Chương 3. Hệ phương trình bậc nhất hai ẩn 24. Bài số 1. Phương trình và hệ phương trình bậc nhất hai ẩn 24. Bài số 2. Giải hệ phương trình bậc nhất hai ẩn 25. Bài số 3. Giải bài toán bằng cách lập hệ phương trình 28. Chương 4. Hàm số y = ax2 (a khác 0). Phương trình bậc hai 29. Bài số 1. Hàm số y = ax2 (a khác 0) 29. Bài số 2. Phương trình bậc hai một ẩn 34. Bài số 3. Hệ thức Vi-ét và ứng dụng 40. Bài số 4. Phương trình quy về phương trình bậc hai 45. Bài số 5. Giải bài toán bằng cách lập phương trình 48. II Hình học 52. Chương 1. Hệ thức lượng trong tam giác vuông 53. Bài số 1. Hệ thức lượng trong tam giác vuông 53. Bài số 2. Tỉ số lượng giác trong tam giác vuông 54. Bài số 3. Ứng dụng thực tế 56. Chương 2. Đường tròn 61. Bài số 1. Sự xác định đường tròn 61. Bài số 2. Đường kính và dây của đường tròn 61. Bài số 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây 61. Bài số 4. Vị trí tương đối giữa đường thẳng và đường tròn. Dấu hiệu nhận biết tiếp tuyến 62. Chương 3. Góc với đường tròn 65. Bài số 1. Góc ở tâm – Góc nội tiếp – Góc tạo bởi tiếp tuyến và dây cung 65. Bài số 2. Góc có đỉnh bên trong – bên ngoài đường tròn 67. Bài số 3. Tứ giác nội tiếp 68. Bài số 4. Độ dài đường tròn, cung tròn. Diện tích hình tròn, hình quạt 72. Chương 4. Hình trụ – Hình nón – Hình cầu 77. Bài số 1. Diện tích xung quanh và thể tích của hình trụ 77. Bài số 2. Diện tích xung quanh và thể tích của hình nón và hình nón cụt 80. Bài số 3. Diện tích và thể tích của hình cầu 83.
Vận dụng định lí Viète giải các dạng toán liên quan đến phương trình bậc hai
Tài liệu gồm 18 trang, được biên soạn bởi thầy giáo Phạm Văn Tuyên, hướng dẫn vận dụng định lí Viète (Vi-ét) vào việc giải các dạng toán thường gặp có liên quan đến phương trình bậc hai. I. KIẾN THỨC CẦN NHỚ. 1. Định lí Viète. Nếu phương trình ax2 + bx + c = 0 (a khác 0) có hai nghiệm x1, x2 thì x1 + x2 = −b/a, x1x2 = c/a. Ngược lại, nếu hai số u, v có tổng u + v = S và tích uv = P có S2 >= 4P thì u và v là các nghiệm của phương trình X2 − SX + P = 0. 2. Ý nghĩa của định lí Viète. + Cho phép nhẩm nghiệm trong những trường hợp đơn giản. + Cho phép tính giá trị của biểu thức đối xứng của các nghiệm và xét dấu của các nghiệm không cần giải phương trình. II. MỘT SỐ DẠNG TOÁN LIÊN QUAN. Dạng 1. Vận dụng định lí Viète vào một số bài toán tính giá trị của biểu thức. Dạng 2. Vận dụng định lí Viète vào bài toán tìm tham số để các nghiệm của phương trình đã cho thỏa mãn một hệ thức. Dạng 3. Vận dụng định lí Viète vào bài toán chứng minh bất đẳng thức, tìm GTLN và GTNN. Dạng 4. Vận dụng định lí Viète vào một số bài toán số học. Dạng 5. Vận dụng định lí Viète vào một số bài toán liên quan hàm số y = ax2 (a khác 0). Dạng 6. Vận dụng định lí Viète vào bài toán giải hệ phương trình hai ẩn. III. BÀI TẬP TỰ LUYỆN.
487 bài toán hệ phương trình bậc nhất và phương trình bậc hai
Tài liệu gồm 165 trang, được biên soạn bởi nhóm tác giả LaTeX Theme and Related Topics, tuyển chọn 487 bài toán hệ phương trình bậc nhất và phương trình bậc hai trong chương trình Toán 9 phần Đại số, có đáp số và lời giải chi tiết. Mục lục : 1 Hệ phương trình bậc nhất – Trang 1. 2 Phương trình bậc hai – Trang 39. 3 Mở rộng – Trang 90.