Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 2 (HK2) lớp 10 môn Toán năm 2022 2023 trường THPT Phan Bội Châu Bình Thuận

Nội dung Đề cuối học kì 2 (HK2) lớp 10 môn Toán năm 2022 2023 trường THPT Phan Bội Châu Bình Thuận Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Phan Bội Châu, tỉnh Bình Thuận; đề thi hình thức 70% trắc nghiệm + 30% tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án trắc nghiệm và hướng dẫn giải tự luận mã đề 802 – 588 – 751 – 261. Trích dẫn Đề cuối kỳ 2 Toán lớp 10 năm 2022 – 2023 trường THPT Phan Bội Châu – Bình Thuận : + Một cửa hàng đang có 30 bông hoa khác nhau. Trong đó có 5 bông hoa mẫu đơn, 10 bông hoa lan và 15 bông hoa hồng. Một khách hàng vào cửa tiệm lấy ngẫu nhiên 5 bông hoa và yêu cầu gói giúp một bó hoa. Tính xác suất sao cho trong 5 bông hoa lấy ra có đủ cả ba loại hoa trên (mẫu đơn, hoa lan và hoa hồng) và số hoa hồng không ít hơn 2? + Trên bờ biển có hai trạm thu phát tín hiệu A và B cách nhau 20 km, người ta xây một cảng biển cho tàu hàng neo đậu là một nửa hình elip nhận AB làm trục lớn và có tiêu cự bằng 16 km. Một con tàu hàng M nhận tín hiệu đi vào cảng biển sao cho hiệu khoảng cách từ nó đến A và B luôn là 16 km (tham khảo hình vẽ). Khi neo đậu tại cảng thì khoảng cách từ con tàu đến bờ biển là bao nhiêu? (Kết quả làm tròn hai chữ số thập phân). + Phát biểu nào sau đây là đúng? A. Biến cố có khả năng xảy ra càng thấp thì xác suất của nó càng gần 1. B. Biến cố có khả năng xảy ra cao hơn sẽ có xác suất nhỏ hơn biến cố có khả năng xảy ra thấp hơn. C. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng gần 0. D. Xác suất của biến cố chắc chắc bằng 1.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Cần Thạnh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Cần Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Cần Thạnh – TP HCM : + Tìm m để phương trình 2 m x m x m 1 3 1 0 có hai nghiệm phân biệt. + Trong mặt phẳng Oxy, viết phương trình chính tắc của elip (E), biết (E) có độ dài trục lớn bằng 16 và tiêu điểm F1(3;0). + Trong mặt phẳng Oxy, cho hai điểm A, B. Viết phương trình đường tròn có đường kính là AB.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có các đỉnh. a) Viết phương trình đường thẳng d đi qua trọng tâm G của tam giác ABC và d song song với đường thẳng AB . b) Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn. Viết phương trình tiếp tuyến của đường tròn biết rằng đường thẳng vuông góc với đường thẳng. + Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình chính tắc của elip E biết E đi qua điểm A và có độ dài trục nhỏ bằng tiêu cự.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bình Tân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Trong mặt phẳng Oxy, cho tam giác ABC có A(1;2), B(5;2), C(1;−3). Viết phương trình đường cao AH của tam giác ABC. + Trong mặt phẳng Oxy, viết phương trình đường tròn (C) có đường kính MN với M(−3;2); N(1;−2). + Trong mặt phẳng tọa độ Oxy, cho elip 2 2 1 16 9 x y E. Xác định tọa độ các đỉnh, tiêu điểm; độ dài trục lớn; độ dài trục nhỏ và tiêu cự của Elip.
Tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ II môn Toán 10
Tài liệu gồm 49 trang được biên soạn bởi thầy Lương Tuấn Đức (Facebook: Giang Sơn) tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ II môn Toán 10, giúp học sinh ôn tập để chuẩn bị cho kỳ thi HK2 Toán 10 tại trường. Các đề thi được biên soạn theo dạng đề trắc nghiệm, mỗi đề gồm 50 câu, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn tài liệu tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ II môn Toán 10: + Tính tổng S bao gồm tất cả các giá trị tham số m để đường thẳng x + my – 2m + 3 = 0 cắt đường tròn (C): x^2 + y^2 + 4x + 4y + 6 = 0 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB lớn nhất, trong đó I là tâm đường tròn (C). [ads] + Một người thợ xây cần xây một bể chứa 10m3 nước, có dạng hình hộp chữ nhật với đáy là hình vuông và không có nắp. Hỏi chiều dài, chiều rộng và chiều cao của lòng bể bằng bao nhiêu để số viên gạch dùng để xây bể là ít nhất, biết thành bể và đáy bể đều được xây bằng gạch, độ dày của thành bể và đáy là như nhau, các viên gạch có kích thước như nhau và số viên gạch trên một đơn vị diện tích bằng nhau. + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại B có BC = 2AB. Điểm M (2;– 2) là trung điểm của cạnh AC. Gọi N là điểm trên cạnh BC sao cho BC = 4BN. Điểm H(4/5;8/5) là giao điểm của AN và BM. Biết N thuộc đường thẳng x + 2y = 6, tính tổng các hoành độ của C và A khi hai đỉnh đó có tọa độ nguyên.