Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường Đông Hưng Hà - Thái Bình

Ngày … tháng 01 năm 2020, trường THPT Đông Hưng Hà, tỉnh Thái Bình tổ chức kì thi kiểm tra chất lượng học kì 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Đông Hưng Hà – Thái Bình mã đề 001, đề thi gồm có 04 trang với 40 câu trắc nghiệm, thời gian học sinh làm bài thi là 60 phút, đề thi có đáp án mã đề 001, 002, 003, 004, 005, 006, 007, 008. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường Đông Hưng Hà – Thái Bình : + Các mặt bên của hình lăng trụ là hình gì? A) Hình chữ nhật. B) Hình thoi. C) Hình bình hành. D) Hình tam giác. + Lương của một công nhân X trong năm 2019 được tính như sau: bắt đầu kể từ tháng 2 năm 2019 , lương mỗi tháng bằng lương tháng kề trước đó cộng thêm 500 nghìn VNĐ. Biết rằng lương tháng 3 năm 2019 của người đó là 3 triệu VNĐ. Tổng số tiền lương (đơn vị triệu VNĐ) của người X trong năm 2019 bằng ? [ads] + Một cấp số cộng có số hạng thứ 2 bằng 4, số hạng thứ 5 bằng 7. Tính số hạng thứ 2019 của cấp số cộng đó. + Cho tứ diện đều ABCD có cạnh bằng a. Gọi M là trung điểm của cạnh AC. Mặt phẳng (P) qua M song song với AB và AD. Tính diện tích thiết diện của mặt phẳng (P) cắt tứ diện ABCD. + Một cầu thủ sút bóng vào cầu môn. Xác suất thành công của cầu thủ đó là 3/7. Xác suất để trong hai lần sút, cầu thủ sút thành công ít nhất 1 lần là?

Nguồn: toanmath.com

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.