Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử môn Toán 2018 THPT Quốc gia - tạp chí Toán Học Tuổi Trẻ lần 4

Đề thi thử môn Toán 2018 THPT Quốc gia – tạp chí Toán Học Tuổi Trẻ lần 4 được đăng tải trên báo THTT (Toán học Tuổi Trẻ) số 487 tháng 1 năm 2018. Đề được biên soạn bởi thầy Nguyễn Thanh Giang, giáo viên trường THPT chuyên Hưng Yên, đề theo cấu trúc quen thuộc 50 trắc nghiệm, thời gian làm bài 90 phút. Nội dung các câu hỏi trong đề bao gồm cả chương trình Toán 11 và Toán 12, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử môn Toán 2018 : + Chi phí sản xuất x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, giấy in …) được cho bởi công thức: C(x) = 0.0001x^2 – 0.2x + 10000, với C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 4 nghìn đồng. Tỉ số M(x) = T(x)/x với T(x) là tổng chi phí (xuất bản và phát hành) cho x cuốn tập chí, được gọi là chi phí trung bình cho 1 cuốn tạp chí khi sản suất x cuốn. Khi chi phí trung bình cho mỗi cuốn tạp chí M(x) thấp nhất, tính chi phí cho mỗi cuốn tạp chí đó. + Cho một đa giác đều 20 đỉnh nội tiếp trong đường tròn O. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật. + Cho một đồng hồ cát như hình bên dưới (gồm 2 hình nón chung đỉnh ghép lại), trong đó đường sinh bất kỳ của hình nón tạo với đáy một góc 60 độ. Biết rằng chiều cao của đồng hồ là 30 cm và tổng thể tích của đồng hồ là 1000π cm3. Hỏi nếu cho đầy lượng cát vào phần trên, thì khi chảy hết xuống dưới, tỷ lệ thể tích cát chiếm chỗ và thể tích phần phía dưới là bao nhiêu. [ads] Bạn đọc có thể xem lại các đề thi thử THTT lần trước: + Đề thi thử môn Toán 2018 THPT Quốc gia – tạp chí Toán Học Tuổi Trẻ lần 3 + Đề thi thử THPT Quốc gia 2018 môn Toán – tạp chí Toán Học Tuổi Trẻ lần 2 + Đề thi thử THPT Quốc gia 2018 môn Toán – tạp chí Toán Học Tuổi Trẻ lần 1

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GDĐT Cà Mau
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 19 tháng 05 năm 2022; đề thi có đáp án mã đề 101 105 109 113 117 121 102 106 110 114 118 122 103 107 111 115 119 123 104 108 112 116 120 124. Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GD&ĐT Cà Mau : + Trong không gian Oxyz cho mặt cầu (S) có phương trình 2 22 xyz xyz 2 4 2 40 và đường thẳng 2 2 14 x yz d. Hai mặt phẳng (P), (Q) chứa đường thẳng d và tiếp xúc với mặt cầu (S) lần lượt tại M, N. Gọi H abc là trung điểm của MN. Khi đó tích abc bằng? + Cho đồ thị hàm số bậc ba 3 2 1 3 y f x ax bx x c và đường thẳng y g x có đồ thị như hình vẽ sau: Biết AB = 5, diện tích hình phẳng giới hạn bởi các đồ thị hàm số y f x y g x và hai đường thẳng x = −1, x = 0 bằng? + Cho khối chóp S ABCD đáy ABCD là hình thang cân AB CD AB CD có hai đường chéo AC BD vuông góc và cắt nhau tại O 1 2 2 2 AB a C D. Biết SO vuông góc với đáy, hai mặt phẳng SAB và SCD vuông góc với nhau. Tính thể tích V của khối chóp S ABCD theo a.
Đề thi thử Toán TN THPT 2022 lần 2 trường THPT Quốc Tuấn - Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần 2 trường THPT Quốc Tuấn, thành phố Hải Phòng (mã đề 134). Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường THPT Quốc Tuấn – Hải Phòng : + Một người lần đầu gửi vào ngân hàng 100 triệu đồng với kì hạn 3 tháng, lãi suất 2% một quý. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi quý số tiền lãi sẽ được nhập vào gốc để tính lãi cho quý tiếp theo. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được 1 năm sau khi gửi tiền gần nhất với kết quả nào sau đây? A. 210 triệu. B. 220 triệu. C. 212 triệu. D. 216 triệu. + Cho hàm số bậc ba y f x có đồ thị C1 và hàm số bậc hai y g x có đồ thị C2. Biết C1 và C2 cắt nhau tại các điểm có hoành độ là 1 2 3 đồng thời C1 đi qua điểm A 1 7 và C2 đi qua điểm B 1 1. Tính diện tích hình phẳng giới hạn bởi hai đường C C 1 2. + Một hộp đựng 7 chiếc bút bi đen và 8 chiếc bút bi xanh. Lấy đồng thời và ngẫu nhiên hai chiếc bút từ hộp. Tính xác suất để 2 chiếc bút lấy được có cùng màu?
Đề thi thử Toán TN THPT lần 4 năm 2021 - 2022 trường Thanh Miện 2 - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT lần 4 năm học 2021 – 2022 trường THPT Thanh Miện 2, tỉnh Hải Dương; đề thi có đáp án mã đề 132 133 134 135. Trích dẫn đề thi thử Toán TN THPT lần 4 năm 2021 – 2022 trường Thanh Miện 2 – Hải Dương : + Trên bức tường cần trang trí một hình phẳng dạng parabol đỉnh S như hình vẽ, biết OS AB 4 m, O là trung điểm của AB. Parabol trên được chia thành ba phần để sơn ba màu khác nhau với mức chi phí: phần trên là phần kẻ sọc 140000 đồng/m2, phần giữa là hình quạt tâm O, bán kính 2 m được tô đậm 150000 đồng/m2, phần còn lại 160000 đồng/ 2m. Tổng chi phí để sơn cả 3 phần gần nhất với số nào sau đây? + Ba cầu thủ sút phạt đền 11m, mỗi người đá một lần với xác suất làm bàn tương ứng là x, y và 0,6 (với x > y). Biết xác suất để ít nhất một trong ba cầu thủ ghi bàn là 0,976 và xác suất để cả ba cầu thủ đều ghi bàn là 0,336. Tính xác suất để có đúng hai cầu thủ ghi bàn. + Trong không gian Oxyz, cho mặt cầu 2 2 2 Sx y z 38 và hai điểm A(4;4;3), B(1;1;1). Gọi (C) là tập hợp các điểm M ∈(S) để |MA – 2MB| đạt giá trị nhỏ nhất. Biết rằng (C) là một đường tròn bán kính r. Tính r.
Đề thi thử tốt nghiệp THPT 2022 môn Toán cụm CSGD Đông Triều - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán cụm CSGD thị xã Đông Triều, tỉnh Quảng Ninh; đề thi có đáp án và lời giải chi tiết các bài toán vận dụng – vận dụng cao. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán cụm CSGD Đông Triều – Quảng Ninh : + Cho hàm số bậc ba 1 3 2 2 f x x bx cx d có đồ thị là C cắt trục hoành tại 3 phân biệt trong đó 2 điểm có hoành độ hoành độ lần lượt là x x 1 2. Đường thẳng d tiếp tuyến của đồ thị C tại điểm có hoành độ 5 4 x cắt đồ thị tại điểm có hành độ 5 3 x. Gọi 1 S là diện tích hình phẳng giới hạn bởi phần đồ thị C bên dưới trục hoành với trục hoành, 2 S là diện tích hình phẳng giới hạn bởi đồ thị C và tiếp tuyến d (như hình vẽ bên). + Trong không gian Oxyz, cho mặt phẳng P x y z 2 2 7 0 điểm M 2 1 1 và mặt cầu 2 2 2 S x y z x y z 4 2 4 7 0. Đường thẳng d qua M cắt P S lần lượt tại các điểm A, B sao cho M là trung điểm AB. Biết độ dài ngắn nhất của đoạn AB là 2 2 a b giá trị của a + b bằng? + Cho hình nón đỉnh S có chiều cao h 5 và bán kính đáy r  2 2. Mặt phẳng P đi qua S và điểm M nằm trong đường tròn đáy cách tâm đáy một khoảng bằng 1. Diện tích thiết diện của hình nón cắt bởi mặt phẳng P có giá trị lớn nhất là?