Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Linh Trung TP HCM

Nội dung Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Linh Trung TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kì 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Linh Trung, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kì 1 Toán lớp 10 năm 2022 – 2023 trường THPT Linh Trung – TP HCM : + Cho hàm số bậc hai: 2 y x 2. Vẽ bảng biến thiên của hàm số đã cho, xác định các khoảng đồng biến, khoảng nghịch biến, tập giá trị của hàm số đã cho. Hàm số đã cho có giá trị lớn nhất hay giá trị nhỏ nhất? Tìm giá trị đó. + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết quỹ đạo chuyển động của quả bóng là một parabol và có độ cao h của quả bóng được tính bởi công thức 2 0 h at v t h trong đó độ cao h và độ cao ban đầu 0 h được tính bằng mét, t là thời gian chuyển động tính bằng giây, a là gia tốc chuyển động tính bằng 2 0 m s v là vận tốc ban đầu tính bằng m s. Tìm độ cao lớn nhất của quả bóng được đá lên so với mặt đất biết sau 0,6 giây quả bóng đạt được độ cao 5,6 m, sau 2 giây quả bóng đạt độ cao 7m, sau 3 giây quả bóng chạm đất. + Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng. Loại máy A mang lại lợi nhuận 2,5 triệu đồng cho mỗi máy bán được và loại máy B mang lại lợi nhuận là 4 triệu đồng mỗi máy. Cửa hàng ước tính rằng tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy. Tìm số lượng máy tính mỗi loại cửa hàng cần nhập về trong tháng đó để lợi nhuận thu được là lớn nhất.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 1 Toán 10 chuyên năm học 2017 - 2018 trường THPT chuyên Hà Nội - Amsterdam
Đề thi học kỳ 1 Toán 10 chuyên năm học 2017 – 2018 trường THPT chuyên Hà Nội – Amsterdam gồm 6 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi học kỳ 1 Toán 10 : + Cho tam giác ABC có góc A = 60 độ, AC = b, AB = c. Gọi M, N là các điểm thỏa mãn các biểu thức vectơ MA – 2NC = 6NA – 3MB, MA + 3MB = -(NC + 3NA). a. Xác định vị trí của các điểm M, N b. Tìm tập hợp điểm P thỏa mãn |PA + PB + PC| = |PM + PN| c. Tìm điều kiện của b, c để BN ⊥ CM [ads] + Có bao nhiêu cách sắp xếp 20 viên bi giống nhau vào 3 hộp sao cho hộp nào cũng có bi? Nếu 20 viên bi đó đôi một khác nhau thì có bao nhiêu cách sắp xếp? + Cho 2018 số nguyên dương không lớn hơn 2018 có tổng bằng 4036. Hỏi từ các số này có thể chọn được ít nhất một bộ các số có tổng bằng 2018 hay không?
Đề thi HK1 Toán 10 năm học 2017 - 2018 trường THPT Hậu Lộc 4 - Thanh Hóa
Đề thi HK1 Toán 10 năm học 2017 – 2018 trường THPT Hậu Lộc 4 – Thanh Hóa gồm 12 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 60 phút, đề thi có đáp án và lời giải chi tiết . Nội dung đề thi thuộc các chủ đề: + Mệnh đề và tập hợp: Gồm 3 câu hỏi trắc nghiệm, đây là các câu hỏi với mức độ dễ giúp học sinh dễ dàng có điểm + Hàm số bậc nhất và hàm số bậc hai: Gồm 3 câu hỏi trắc nghiệm và 1 bài toán tự luận, các câu hỏi thuộc phần này cũng là các câu hỏi cơ bản, không khó + Phương trình và hệ phương trình: Gồm 2 câu hỏi trắc nghiệm và 3 bài toán tự luận, một số câu hỏi trong phần này dùng để phân loại điểm 9, 10 + Vectơ và các phép toán: Gồm 4 câu hỏi trắc nghiệm và một bài toán tự luận, các bài toán trong phần này cũng không quá khó [ads] Trích dẫn đề thi HK1 Toán 10 : + Cho hàm số y = ax^2 + bx + c có đồ thị như hình vẽ bên dưới. Mệnh đề nào sau đây đúng? A. a > 0, b < 0, c > 0 B. a > 0, b > 0, c > 0 C. a > 0, b = 0, c > 0 D. a < 0, b > 0, c > 0 + Trong mặt phẳng với hệ tọa độ Oxy, Cho tam giác ABC có A(2;1), B(-1;-2), C (-3;2). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. + Cho tam giác ABC. Gọi M, N là các điểm thỏa mãn: vtAM = 1/3.vtAB, vtCN = 2.vtBC. Chứng minh rằng: vtMN = -7/3.vtAB + 3.vtAC
Đề thi HK1 Toán 10 năm học 2017 - 2018 trường THPT chuyên Trần Phú - Hải Phòng
Đề thi HK1 Toán 10 năm học 2017 – 2018 trường THPT chuyên Trần Phú – Hải Phòng gồm 4 trang với 40 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho phương trình (m^2 – 1)x + m + 1 = 0. Khẳng định nào dưới đây là sai? A. Khi m ≠ ±1, phương trình có nghiệm duy nhất B. Khi m = 1, phương trình có tập nghiệm S = ∅ C. Khi m = -1, phương trình có tập nghiệm S = R D. Khi m = ±1, phương trình vô nghiệm [ads] + Chuẩn bị được nghỉ hè, một lớp có 45 học sinh cùng bàn nhau để cả lớp cùng đi tham quan du lịch. Do sự lựa chọn của các bạn không được tập trung và thống nhất vào một địa điểm nào, Lớp Trưởng đã lấy biểu quyết bằng cách giơ tay. Kết quả, hai lần số bạn chọn đi Tam Đảo thì ít hơn ba lần số bạn chọn đi Hạ Long là 3 bạn và có 9 bạn chọn đi địa điểm khác. Với nguyên tắc số ít hơn phải theo số đông hơn thì họ sẽ tham quan du lịch đến địa điểm là: A. Địa điểm khác B. Tạm hoãn để bàn lại C. Tam Đảo D. Hạ Long + Cho tam giác ABC, tập hợp điểm M thỏa mãn |vtMA + vtBC| = 1/2.|vtMA – vtMB| là: A. Đường trung trực đoạn BC B. Đường tròn tâm I, bán kính R = AB/2 với I là đỉnh hình bình hành ABIC C. Đường thẳng song song với BC D. Đường tròn tâm I, bán kính R = AB/2 với I là đỉnh hình bình hành ABCI
Đề thi HK1 Toán 10 năm học 2017 - 2018 trường THPT Trần Phú - Hà Nội
Đề thi HK1 Toán 10 năm học 2017 – 2018 trường THPT Trần Phú – Hà Nội mã đề 006 gồm 25 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết  (Lời giải được trình bày bởi thầy Nguyễn Văn Quý). Trích dẫn đề thi : + Cho hệ phương trình: 2x – y + 1 = 0 x^2 – 3xy + y^2 = 2x – 5 + m^2 a. Giải hệ phương trình với m = 0 b. Tìm m để hệ phương trình đã cho có nghiệm [ads] + Cho hàm số y = |x – 3|. Chọn khẳng định đúng trong các khẳng định sau về hàm số: A. Hàm số chẵn B. Hàm số đồng biến trên R C. Giá trị nhỏ nhất của hàm số là y = 0 D. Hàm số nghịch biến trên R + Tìm m để hàm số y = (m – 2)x + 1 là hàm số bậc nhất? Đáp án đúng là: A. m ≠ 0; m ≠ 2   B. m ≠ 2 C. ∀m ∈ R   D. m ≠ 0