Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 2)

Nội dung Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 2) Bản PDF - Nội dung bài viết Chinh phục lớp 9 môn Toán với sách Đại số Tập 2 Chinh phục lớp 9 môn Toán với sách Đại số Tập 2 Sách "Chinh phục lớp 9 môn Toán" bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 2) là tài liệu hữu ích giúp các học sinh nắm vững kiến thức và phương pháp giải các dạng toán trong chương trình Toán lớp 9. Sách được tổ chức theo từng dạng toán và mỗi bài học đều bao gồm các phần sau: A. Tóm tắt kiến thức cần học: Giúp học sinh hiểu rõ về nội dung cần nắm được trong bài toán và chuẩn bị tinh thần đúng đắn cho quá trình học tập. B. Phương pháp giải các dạng toán: Hướng dẫn chi tiết các phương pháp giải các dạng toán cụ thể, giúp học sinh áp dụng linh hoạt và hiệu quả trong việc giải các bài tập. Các nội dung chính trong sách bao gồm: + Chương 3. Hệ hai phương trình bậc nhất hai ẩn: Đề cập đến phương trình bậc nhất hai ẩn, giải hệ phương trình bậc nhất hai ẩn và cách giải toán bằng cách lập hệ phương trình bậc nhất hai ẩn. + Chương 4. Hàm số y = ax^2 (a khác 0) và phương trình bậc hai một ẩn: Thảo luận về hàm số y = ax^2, phương trình bậc hai một ẩn, cách quy về phương trình bậc hai và phương pháp giải toán bằng lập phương trình. Với cách trình bày rõ ràng, dễ hiểu và sự tổ chức logic, sách Đại số Tập 2 chắc chắn sẽ giúp các học sinh tự tin và thành công trong việc học môn Toán ở cấp độ lớp 9.

Nguồn: sytu.vn

Đọc Sách

Hàm số, đồ thị và sự tương giao - Dương Minh Hùng
Tài liệu gồm 28 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề hàm số, đồ thị và sự tương giao, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết I. Hàm số bậc nhất 1. Khái niệm hàm số bậc nhất. 2. Tính chất. 3. Đồ thị của hàm số y = ax + b (a khác 0). 4. Cách vẽ đồ thị hàm số y = ax + b (a khác 0). 5. Vị trí tương đối của hai đường thẳng. 6. Hệ số góc của đường thẳng y = ax + b. 7. Một số phương trình đường thẳng đặc biệt. II. Hàm số bậc hai 1. Khái niệm hàm số bậc hai. 2. Tính chất 3. Đồ thị của hàm số y = ax2 (a khác 0). 4. Cách vẽ đồ thị hàm số y = ax2 (a khác 0). 5. Quan hệ giữa Parabol y = ax2 (a khác 0) và đường thẳng y = mx + n (m khác  0). B. Phân dạng toán cơ bản Dạng toán 1. Vẽ đồ thị hàm số. Dạng toán 2. Tìm tọa độ giao điểm của đường thẳng và Parabol. Dạng toán 3. Tìm phương trình đường thẳng, phương trình Parabol. Dạng toán 4. Tìm điều kiện của tham số m thỏa mãn yêu cầu cho trước. C. Bài tập rèn luyện
Phương trình bậc hai, hệ thức Vi-ét và ứng dụng - Dương Minh Hùng
Tài liệu gồm 26 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề phương trình bậc hai, hệ thức Vi-ét và ứng dụng, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết 1. Công thức nghiệm. 2. Công thức nghiệm thu gọn. 3. Định lí Vi-ét. 4. Ứng dụng Vi-ét (nhẫm nghiệm đặc biệt của phương trình bậc hai). 5. Các ứng dụng vào giải toán chứa tham số. B. Phân dạng toán cơ bản Dạng 1. Giải phương trình quy về bậc nhất. Dạng 2. Giải phương trình bậc hai. Dạng 3. Tính giá trị biểu thức nghiệm dùng Vi-ét. Dạng 4. Toán tham số m với ứng dụng định lý Vi-ét. C. Bài tập rèn luyện
Các phép toán về căn thức - Dương Minh Hùng
Tài liệu gồm 19 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề căn thức, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết 1. Căn bậc hai số học. 2. Liên hệ giữa phép nhân với phép khai phương. 3. Liên hệ giữa phép chia với phép khai phương. 4. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. B. Phân dạng toán cơ bản Dạng 1. Tìm điều kiện để biểu thức có chứa căn thức có nghĩa. Dạng 2. Tính giá trị biểu thức chứa căn. Dạng 3. Rút gọn biểu thức chứa căn. Dạng 4. Rút gọn và tính giá trị biểu thức chứa căn. C. Bài tập rèn luyện
Phương pháp giải các dạng toán căn bậc hai, căn bậc ba
Tài liệu gồm 54 trang, tóm tắt kiến thức trọng tâm và hướng dẫn phương pháp giải các dạng toán căn bậc hai, căn bậc ba, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 phần Đại số chương 1. Bài 1 . Căn bậc hai. Bài 2 . Căn thức bậc hai và hằng đẳng thức √A^2 = |A|. + Dạng 1. Tìm căn bậc hai số học của một số. + Dạng 2. So sánh các căn bậc hai số học. + Dạng 3. Giải phương trình, bất phương trình. + Dạng 4. Tìm điều kiện để √A có nghĩa. + Dạng 5. Rút gọn biểu thức dạng √A^2. Bài 3 . Liên hệ giữa phép nhân và phép khai phương. + Dạng 1. Khai phương một tích. + Dạng 2. Nhân các căn bậc hai. + Dạng 3. Rút gọn, tính giá trị của biểu thức. + Dạng 4. Biến đổi một biểu thức về dạng tích. + Dạng 5. Giải phương trình. + Dạng 6. Chứng minh bất đẳng thức. Bài 4 . Liên hệ giữa phép chia và phép khai phương. + Dạng 1. Khai phương một thương. + Dạng 2. Chia các căn bậc hai. + Dạng 3. Rút gọn, tính giá trị của biểu thức. + Dạng 4. Giải phương trình. Bài 5 . Bảng căn bậc hai. Bài 6 – Bài 7 . Biến đổi đơn giản biểu thức chứa căn thức bậc hai. + Dạng 1. Đưa thừa số ra ngoài dấu căn. + Dạng 2. Đưa thừa số vào trong dấu căn. + Dạng 3. Khử mẫu của biểu thức lấy căn. + Dạng 4. Trục căn thức ở mẫu. + Dạng 5. So sánh hai số. + Dạng 6. Rút gọn biểu thức. Bài 8 . Rút gọn biểu thức chứa căn thức bậc hai. + Dạng 1. Rút gọn biểu thức chỉ có cộng, trừ căn thức. + Dạng 2. Rút gọn biểu thức có chứa các phép cộng, trừ, nhân, chia căn thức dưới dạng phân thức đại số. + Dạng 3. Rút gọn rồi tính giá trị của biểu thức hoặc rút gọn rồi tìm giá trị của biểu thức để biểu thức có một giá trị nào đó. + Dạng 4. Rút gọn biểu thức rồi chứng minh biểu thức có một tính chất nào đó hoặc tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Dạng 5. Chứng minh đẳng thức. Bài 9 . Căn bậc ba. + Dạng 1. Tìm căn bậc ba của một số. + Dạng 2. So sánh. + Dạng 3. Thực hiện các phép tính. + Dạng 4. Giải phương trình.