Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Ninh Bình

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Ninh Bình Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Ninh Bình Bạn đã sẵn sàng thử thách bản thân với đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 của sở GD&ĐT Ninh Bình chưa? Đề thi gồm 5 bài toán dạng tự luận đầy hấp dẫn, sẽ đưa bạn vào thế giới của kiến thức và logic Toán học. Thời gian làm bài thi là 150 phút, đủ để bạn thể hiện khả năng và kiến thức của mình. Kì thi sẽ diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020, cùng chờ đón những phút giây căng thẳng và hồi hộp để thử sức mình nhé! Một trong những bài toán thú vị trong đề thi là bài toán về đường tròn và các điểm P, A, B, C, D, N, Q, O. Hãy thử sức với các yêu cầu "nhạy cảm" như chứng minh tứ giác AOBQ nội tiếp đường tròn, chứng minh ANP = BNP và bốn điểm O, D, C, N cùng nằm trên một đường tròn, hay chứng minh rằng đường trung trực của đoạn ON luôn đi qua một cố định khi P di động trên đoạn thẳng AB. Bên cạnh đó, đề thi cũng đưa ra các bài toán khác như tìm số nguyên n để n2 + 2022 là số chính phương, và tìm m sao cho phương trình x2 − 2mx + 2m − 1 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn 4x1 = x22. Đừng bỏ lỡ cơ hội thử thách bản thân và khám phá những bí mật của Toán học thông qua đề thi tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Ninh Bình. Hãy tự tin và cố gắng hết mình, thành công sẽ đến với những ai không ngần ngại khó khăn!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào Chủ Nhật ngày 11 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, một phân xưởng phải làm xong 900 sản phẩm trong một số ngày quy định. Thực tế, mỗi ngày phân xưởng đã làm được nhiều hơn 15 sản phẩm so với số sản phẩm phải làm một ngày theo kế hoạch. Vì thế 3 ngày trước khi hết thời hạn, phân xưởng đã làm xong 900 sản phẩm. Hỏi, theo kế hoạch, mỗi ngày phân xưởng phải làm bao nhiêu sản phẩm? (Giả định rẳng số sản phẩm mà phân xưởng làm được trong mỗi ngày là bằng nhau). + Một khối gỗ dạng hình trụ có bán kính đáy là 30cm và chiều cao là 120cm. Tính thể tích khối gỗ đó (lấy π ≈ 3,14). + Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Tiếp tuyến tại điểm A của đường tròn (O) cắt đường thẳng BC tại điểm S. Gọi I là chân đường vuông góc kẻ từ điểm O đến đường thẳng BC. 1. Chứng minh tứ giác SAOI nội tiếp. 2. Gọi H, D lần lượt là chân các đường vuông góc kẻ từ điểm A đến các đường thẳng SO, BC. Chứng minh OAH = IAD. 3. Vẽ đường cao CE của tam giác ABC. Gọi Q là trung điểm của đoạn thẳng BE. Đường thẳng QD cắt đường thẳng AH tại điểm K. Chứng minh BQ.BA = BD.BI và đường thẳng CK song song với đường thẳng SO.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = ax + b. Tìm a và b để đường thẳng (d) có hệ số góc bằng 3 và đi qua điểm M(-1;2). + Cho phương trình x2 − 2mx – m2 − 2 = 0 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 (với x1 < x2) thỏa mãn hệ thức x2 − 2|x1| – 3x1x2 = 3m2 + 3m + 4. + Cho đường tròn (O) và một điểm M nằm ngoài đường tròn. Từ điểm M kẻ hai tiếp tuyến MA, MB đến (O) (với A và B là các tiếp điểm). Gọi C là điểm đối xứng với B qua O, đường thẳng MC cắt đường tròn (O) tại D (D khác C). 1. Chứng minh MAOB là tứ giác nội tiếp. 2. Gọi N là giao điểm của hai đường thẳng AD và MO. Chứng minh MN2 = ND.NA. 3. Gọi H là giao điểm của MO và AB. Chứng minh (HA/HD)^2 – AC/HN = 1.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Đắk Lắk : + Một khu vườn hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích của khu vườn, biết rằng nếu chiều dài giảm 2 lần và chiều rộng tăng 3 lần thì chu vi khu vườn không thay đổi. + Cho nửa đường tròn tâm O đường kính AB. Gọi M là điểm chính giữa cung AB, E là điểm trên cung AM (E khác A và M). Lấy điểm F trên đoạn BE sao cho BF = AE. Gọi K là giao điểm của MO và BE. a) Chứng minh rằng EAOK là tứ giác nội tiếp. b) Chứng minh rằng AEMF vuông cân. c) Hai đường thẳng AE và OM cắt nhau tại D. Chứng minh rằng MK.ED = MD.EK. + Bút chì có dạng hình trụ, có đường kính đáy 8mm và chiều cao bằng 180mm. Thân bút chì được làm bằng gỗ, phần lõi được làm bằng than chì. Phần lõi có dạng hình trụ có chiều cao bằng chiều dài bút và đáy là hình tròn có đường kính 2mm. Tính thể tích phần gỗ của 2024 chiếc bút chì (lấy pi = 3,14).
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Đà Nẵng; đề thi dành cho thí sinh thi vào trường THPT chuyên Lê Quý Đôn, Đà Nẵng. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Đà Nẵng : + Trên cùng một mặt phẳng tọa độ, cho parabol (P): y = x2 và đường thẳng (d): y = kx + 5. Đường thẳng (d) cắt parabol (P) tại hai điểm A và B. Gọi C, D lần lượt là hình chiếu của A, B trên trục Ox. a) Khi k = −4, tính diện tích hình thang ABDC. b) Tìm tất cả các giá trị của k để AD và BC cắt nhau tại một điểm nằm trên đường tròn đường kính CD. + Cho tam giác nhọn ABC với AB < AC, nội tiếp đường tròn (O). Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở D. Đường tròn đường kính AD cắt đường tròn đường kính OD tại điểm E (khác D). Gọi F là giao điểm của đoạn thẳng OE và đường tròn (O). a) Chứng minh rằng ba điểm A, O, E thẳng hàng và CF là tia phân giác của góc BCE. b) Các tia AB, AC lần lượt cắt đường tròn đường kính AD tại các điểm G, K (đều khác A). Chứng minh rằng OD đi qua trung điểm của đoạn thẳng GK. + Cho tam giác nhọn ABC có AB < AC < BC, đường tròn (O) nội tiếp tam giác ABC tiếp xúc với cạnh AB tại M. Lấy điểm E nằm giữa A và M. Trên cạnh AC, BC lần lượt lấy các điểm D, F sao cho AD = AE và BF = BE. Đường tròn ngoại tiếp tam giác DEF lần lượt cắt AB và BC tại G (khác E) và H (khác F). Chứng minh rằng O là tâm đường tròn ngoại tiếp tam giác DEF và các đường thẳng CM, ED, GH đồng quy.