Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Yên Bái

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Yên Bái Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD ĐT Yên Bái Đề tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD ĐT Yên Bái Chào mừng quý thầy cô giáo và các em học sinh lớp 9! Sytu hân hạnh giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022 - 2023 sở Giáo dục và Đào tạo tỉnh Yên Bái. Đề thi mã đề 008 bao gồm 04 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm. Thời gian làm bài thi là 90 phút (không tính thời gian phát đề). Kỳ thi sẽ diễn ra vào ngày 07 tháng 06 năm 2022. Dưới đây là một số câu hỏi trích dẫn từ đề thi: Cho đường tròn (O) đường kính AB = 2/3cm và C là điểm chính giữa của cung AB. Cung AmB có tâm C và bán kính CA. Diện tích phần gạch chéo là bao nhiêu? Từ hai vị trí A và B của một tòa nhà, người ta dùng dụng cụ quan sát đỉnh C của ngọn núi. Chiều cao AB của tòa nhà là 70m, phương nhìn AC tạo góc 30 độ với phương ngang, phương nhìn BC tạo góc 15 độ 30 phút với phương ngang. Ngọn núi có chiều cao so với mặt đất cao nhất là bao nhiêu? Cho hình bình hành ABCD (A > 90°). Gọi M, N, P lần lượt là hình chiếu của C lên AD, DB và AB. Biết MN = 5 và NP = 4. Độ dài CN gần với kết quả nào sau đây nhất? Mong rằng đề thi này sẽ giúp các em chuẩn bị tốt cho kỳ thi sắp tới. Chúc các bạn thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GDĐT Vĩnh Phúc
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 02 phần: phần trắc nghiệm gồm 04 câu, chiếm 02 điểm, phần tự luận gồm 04 câu, chiếm 08 điểm, thời gian làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc : + Cho parabol (P): y = 1/2.x^2 và đường thẳng d: y = 2x + m (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn (x1x2 + 1)^2 = x1 + x2 + x1x2 + 3. + Một đội xe theo kế hoạch mỗi ngày chở số tấn hàng như nhau và dự định chở 140 tấn hàng trong một số ngày. Do mỗi ngày đội xe đó chở vượt mức 5 tấn nên đội xe đã hoàn thành kế hoạch sớm hơn thời gian dự định 1 ngày và chở thêm được 10 tấn hàng. Hỏi số ngày dự định theo kế hoạch là bao nhiêu? [ads] + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ điểm A kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm). Kẻ đường kính BD của đường tròn (O). Đường thẳng đi qua O vuông góc với đường thẳng AD và cắt AD, BC lần lượt tại K, E. Gọi I là giao điểm của OA và BC. a) Chứng minh rằng các tứ giác ABOC, AIKE nội tiếp đường tròn. b) Chứng minh rằng OI.OA = OK.OE. c) Biết OA = 5 cm, đường tròn (O) có bán kính R = 3cm. Tính độ dài đoạn thẳng BE.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bình Định
Thứ Bảy ngày 18 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Định gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Định : + Trong kỳ thi chọn học sinh giỏi lớp 9 cấp trường, tổng số học sinh đạt giải của cả hai lớp 9A1 và 9A2 là 22 em, chiếm tỷ lệ 40% trên tổng số học sinh dự thi của hai lớp trên. Nếu tính riêng từng lớp thì lớp 9A1 có 50% học sinh dự thi đạt giải và lớp 9A2 có 28% học sinh dự thi đạt giải. Hỏi mỗi lớp có tất cả bao nhiêu học sinh dự thi. [ads] + Cho đường tròn tâm O, đường kính AB và d là một tiếp tuyến của đường tròn (O) tại điểm A. Trên đường thẳng d lấy điểm M (khác A) và trên đoạn OB lấy điểm N (khác O và B). Đường thẳng MN cắt đường tròn (O) tại hai điểm C và D sao cho C nằm giữa M và D. Gọi H là trung điểm của đoạn thẳng CD. a) Chứng minh tứ giác AOHM nộp tiếp được trong đường tròn. b) Kẻ đoạn DK song song với MO (K nằm trên đường thẳng AB). Chứng minh rằng MDK = BAH và MA^2 = MC.MD. c) Đường thẳng BC cắt đường thẳng OM tại điểm I. Chứng minh rằng đường thẳng AI song song với đường thẳng BD. + Cho x và y là các số thực dương thỏa mãn x + y = √10. Tìm giá trị của x và y để biểu thức A = (x^4 + 1)(y^4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Đề tuyển sinh lớp 10 môn Toán năm học 2020 - 2021 sở GDĐT Nghệ An
Đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021 sở GD&ĐT Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021 sở GD&ĐT Nghệ An : + Cho phương trình x^2 – 4x – 3 = 0 có hai nghiệm phân biệt x1, x2. Không giải phương trình, hãy tính giá trị của biểu thức T = x1^2/x2 + x2^2/x1. + Hưởng ứng phong trào toàn dân chung tay đẩy lùi đại dịch Covid-19, trong tháng hai năm 2020, hai lớp 9A và 9B của một trường THCS đã nghiên cứu và sản xuất được 250 chai nước rửa tay sát khuẩn. Vì muốn tặng quà cho khu cách li tập trung trên địa bàn, trong tháng ba, lớp 9A làm vượt mức 25%, lớp 9B làm vượt mức 20%, do đó tổng sản phẩm của cả hai lớp vượt mức 22% so với tháng hai. Hỏi trong tháng hai, mỗi lớp đã sản xuất được bao nhiêu chai nước rửa tay sát khuẩn. [ads] + Cho tứ giác ABCD (AD > BC) nội tiếp đường tròn tâm O đường kính AB. Hai đường chéo AC và BD cắt nhau tại E. Gọi H là hình chiếu của E trên AB. a) Chứng minh ADEH là tứ giác nội tiếp. b) Tia CH cắt đường tròn (O) tại điểm thứ hai là K. Gọi I là giao điểm của DK và AB. Chứng minh DI^2 = AI.BI. c) Khi tam giác DAB không cân, gọi M là trung điểm của AB, tia DC cắt tia HM tại N. Tia NB cắt đường tròn ngoại tiếp tam giác HMB tại điểm thứ hai là F. Chứng minh F thuộc đường tròn (O).
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bến Tre (chung)
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bến Tre (chung) được sử dụng cho toàn bộ các thí sinh dự thi vào các lớp 10 Trung học Phổ thông Công lập, đề thi gồm 08 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bến Tre (chung) : + Với giá trị nào của tham số m thì đồ thị của hai hàm số y = x + (5 + m) và y = 2x + (7 – m) cắt nhau tại một điểm nằm trên trục hoành? [ads] + Cho tam giác ABC vuông tại B có đường cao BH (H thuộc AC), biết AB = 6 cm, AC = 10 cm. Tính độ dài các đoạn thẳng BC, BH. + Trên đường tròn (O) lấy hai điểm A, B sao cho AOB = 65° và điểm C như hình vẽ. Tính số đo AmB, ACB và số đo ACB.