Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán nguyên hàm và tích phân vận dụng, vận dụng cao - Nguyễn Minh Tuấn

Các bài toán nguyên hàm và tích phân vận dụng, vận dụng cao luôn là các câu hỏi thuộc nhóm phân loại học sinh giỏi, xuất sắc và chiếm một tỉ lệ điểm số tương đối trong đề thi THPT Quốc gia môn Toán. Nhằm giúp các em học sinh có thể nắm vững dạng toán này, tác giả Nguyễn Minh Tuấn đã biên soạn chuyên đề hướng dẫn phương pháp giải các bài toán nguyên hàm – tích phân khó. Nội dung của chuyên đề : 1. Tích phân truy hồi 2. Nguyên hàm – tích phân hàm phân thức hữu tỷ Nguyên hàm phân thức hữu tỷ là một bài toán khá cơ bản, nhưng cũng được phát triển ra rất nhiều bài toán khó. 3. Nguyên hàm – tích phân hàm lượng giác Để làm tốt được các bài toán nguyên hàm – tích phân hàm lượng giác ta cần nắm chắc được các biến đổi hạ bậc lượng giác, tích thành tổng, theo góc phụ …. 4. Đưa biểu thức vào trong dấu vi phân Ở nội dung bài viết này ta sẽ nhắc tới một số bài toán sử dụng kỹ thuật đưa một biểu thức vào trong dấu vi phân, để làm được những bài toán này cần chú ý đến kỹ năng biến đổi, đạo hàm. 5. Tích phân liên kết Có rất nhiều bài toán tích phân ta không thể sử dụng cách tính trực tiếp được hoặc tính trực tiếp tương đối khó với những bài toán như vậy ta thường sử dụng tới một kỹ thuật đó là tích phân liên kết. Chủ yếu các bài toán sử dụng phương pháp này là các tích phân lượng giác hoặc có thể là hàm phân thức. 6. Kỹ thuật lượng giác hóa Khi tính tích phân ta sẽ gặp một số bài toán dưới dấu căn thức chứa một số hàm có dạng đặc biệt mà khó tính như bình thường được, khi đó ta sẽ nghĩ tới phương pháp lượng giác hóa. 7. Nguyên hàm – tích phân từng phần Kỹ thuật từng phần là một kỹ thuât khá cơ bản nhưng rất hiệu quả trong các bài toán tính tích phân, ở trong phần này ta sẽ không nhắc lại các bài toán cơ bản nữa mà chỉ đề cập tới một số bài toán nâng cao trong phần này. 8. Đánh giá hàm số để tính tích phân Trong các bài toán tính tích phân ta sẽ gặp phải một số trường hợp tính tích phân hàm cho bởi 2 công thức phải sử dụng đến đánh giá để so sánh 2 biểu thức từ đó chia tích phân cần tính ra thành 2 phần. 9. Kỹ thuật thế biến – lấy tích phân 2 vế Kỹ thuật thế biến – lấy tích phân 2 vế được áp dụng cho những bài toán mà giả thiết có dạng tổng của hai hàm số, khi đó ta sẽ lợi dụng mối liên hệ giữa các hàm theo biến số x để thay thế những biểu thức khác sao cho 2 hàm số đó đổi chỗ cho nhau. 10. Tích phân hàm cho bởi 2 công thức Ta hiểu nôm na tích phân hàm phân nhánh tức là các phép tính tích phân những hàm cho bởi hai công thức, đây là một vấn đề dễ không có gì khó khăn cả nếu đã từng gặp và biết phương pháp làm. 11. Tích phân hàm ẩn Những bài toán tích phân trong phần này không khó, tất cả được che giấu dưới một lớp các ẩn số, việc làm của chúng ta là phát hiện ra được cách đặt ẩn để đưa tất cả về dạng chuẩn thì bài toán sẽ được giải quyết hoàn toàn. 12. Tích phân đổi cận – đổi biến Các bài toán tích phân đổi biến đổi cận là các bài toán tương đối hay, xuất hiện thường xuyên trong các đề thi thử và đề thi THPT quốc gia. 13. Tích phân có cận thay đổi Nếu như bình thường ta hay xét với những bài tích phân có cận là các hằng số cố định thì trong phần này ta sẽ cùng tìm hiểu các bài toán có cận là các hàm theo biến x. 14. Bài toán liên quan tới f’(x) và f(x) Trong phần này ta sẽ cùng nhau tìm hiểu về một lớp bài toán liên quan tới quan hệ của hai hàm f’(x) và f(x), đây là một dạng đã xuất hiện trong đề thi THPT quốc gia 2018 của bộ GD – ĐT và trong rất nhiều đề thi thử của các trường chuyên. 15. Bất đẳng thức tích phân Các bài toán bất đẳng thức tích phân được giới thiệu trong phần này nhất là phần sử dụng bất đẳng thức Cauchy – Schwarz đa phần chỉ mang tính tính tham khảo, không nên quá đi sâu do đây là chương trình liên quan tới toán cao cấp của bậc đại học. 1. Phân tích bình phương 2. Cân bằng hệ số và bất đẳng thức AM – GM Trong phần này ta sẽ tiếp cận một số bài toán khó hơn phải sử dụng đến bất đẳng thức AM – GM và các kỹ thuật cân bằng hệ số trong bất đẳng thức. 3. Bất đẳng thức Cauchy – Schwarz cho tích phân Nhìn chung thì các bài toán này chưa gặp thì sẽ thấy nó lạ và rất khó, tuy nhiên nếu đã gặp và làm quen rồi thì bài toán này trở nên tương đối dễ.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề nguyên hàm - Lại Văn Tôn
Tài liệu gồm 48 trang bao gồm lý thuyết nguyên hàm, công thức nguyên hàm cơ bản và mở rộng, các dạng toán nguyên hàm, ví dụ minh họa và bài tập trắc nghiệm – tự luận chuyên đề nguyên hàm, tài liệu được biên soạn bởi thầy giáo Lại Văn Tôn. Nội dung tài liệu chuyên đề nguyên hàm : 1. ĐỊNH NGHĨA NGUYÊN HÀM 2. NGUYÊN HÀM CỦA CÁC HÀM SƠ CẤP 2.1. Bảng nguyên hàm các hàm sơ cấp 2.2. Các ví dụ minh họa 3. CÁC TÍNH CHẤT CỦA NGUYÊN HÀM 4. TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP PHÂN TÍCH 4.1. Các công thức, kỹ năng phân tích cần nhớ 4.2. Các dạng phân tích cơ bản 4.2.1. Biến đổi căn thức, hàm mũ về dạng lũy thừa, mũ cơ bản 4.2.2. Phân tích hàm hữu tỉ 4.2.3. Phân tích hàm lượng giác 4.2.4. Phân tích hàm siêu việt [ads] 5. TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP ĐỔI BIẾN 5.1. Một số ví dụ mở đầu về phương pháp đổi biến 5.2. Đổi biến hàm hữu tỉ, hàm căn thức đơn giản, hàm mũ – logarit 5.3. Đổi biến hàm lượng giác 5.4. Đổi biến hàm vô tỉ 6. TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN 6.1. Lý thuyết nguyên hàm từng phần 6.2. Các ví dụ minh họa 7. GIỚI THIỆU MỘT SỐ BÀI TẬP ĐỊNH DẠNG TRẮC NGHIỆM 7.1. Các câu hỏi lý thuyết 7.2. Tìm nguyên hàm cụ thể 7.3. Tìm một nguyên hàm riêng, tính giá trị của nguyên hàm tìm được
Chuyên đề tự luận nguyên hàm, tích phân và ứng dụng - Nguyễn Chiến
Tài liệu gồm 67 trang hướng dẫn giải các dạng toán tự luận nguyên hàm, tích phân và ứng dụng trong chương trình Giải tích 12 chương 3, tài liệu được biên soạn bởi thầy Nguyễn Chiến. Nội dung tài liệu : + Phần 1. Nguyên hàm: Gồm định nghĩa, định lý và các tính chất của nguyên hàm, bảng nguyên hàm các hàm số thường gặp và mở rộng, các phương pháp tìm nguyên hàm. + Phần 2. Tích phân: Gồm công thức tính và tính chất của tích phân, các phương pháp tính tích phân. + Phần 3. Ứng dụng tích phân. Trong mỗi phần đều gồm lý thuyết SGK, phân dạng toán, hướng dẫn giải, ví dụ mẫu có lời giải chi tiết và tổng hợp các bài toán tự luận nguyên hàm, tích phân và ứng dụng đặc sắc.
Tính nhanh nguyên hàm - tích phân từng phần sử dụng sơ đồ đường chéo - Ngô Quang Chiến
Tài liệu gồm 7 trang hướng dẫn cách tính nhanh nguyên hàm – tích phân từng phần bằng sơ đồ đường chéo do thầy Ngô Quang Chiến biên soạn. Khi mà các đề thi THPT Quốc gia, đề kiểm tra và đề thi học kỳ môn Toán đều chuyển sang dạng bài trắc nghiệm, không yêu cầu trình bày lời giải thì phương pháp này càng cho thấy sự hiệu quả và rút ngắn thời gian làm bài. Phương pháp sơ đồ đường chéo tỏ ra đặc biệt hiệu quả và hữu ích đối với các dạng bài nguyên hàm – tích phân phải sử dụng tích phân từng phần nhiều lần. Nội dung tài liệu : I. NHẮC LẠI KIẾN THỨC 1. Công thức: ∫udv = vu – ∫vdu 2. Áp dụng với các dạng nguyên hàm: ∫p(x).e^(ax + b)dx, ∫p(x).sin(ax + b)dx, ∫p(x).cos(ax + b)dx, ∫p(x).(ln(ax + n))^ndx …. 3. Cách đặt: + Ưu tiên đặt “u” theo: logarit (ln) → đa thức (p(x)) → lượng giác (sinx, cosx) → mũ (e^x) (Nhất log – nhì đa – tam lượng – tứ mũ ) + Phần còn lại là “dv” II. PHƯƠNG PHÁP 1. Chia thành 2 cột + Cột 1 (cột trái: cột u) luôn lấy đạo hàm tới 0 + Cột 2 (cột phải: cột dv) luôn lấy nguyên hàm cho tới khi tương ứng với cột 1 2. Nhân chéo kết quả của hai cột với nhau 3. Dấu của phép nhân đầu tiên sẽ có dấu (+), sau đó đan dấu (-), (+), (-) … [ads] III. PHÂN DẠNG VÀ VÍ DỤ MINH HOẠ 1. Dạng ∫p(x).e^(ax + b)dx 2. Dạng ∫p(x).sin(ax + b)dx, ∫p(x).cos(ax + b)dx 3. Dạng ∫p(x).(ln(ax + n))^ndx Dạng ∫p(x).(ln(ax + n))^ndx thì ưu tiên đặt u = (ln(ax + n))^n vì vậy khi đạo hàm “u” sẽ không bằng 0 được, do vậy cần phải điều chỉnh hệ số rút gọn (nhân ngang → đơn giản tử mẫu) rồi sau đó mới làm tiếp. 4. Dạng 4: Nguyên hàm lặp (tích phân lặp) Nếu khi ta tính nguyên hàm (tích phân) theo sơ đồ đường chéo mà lặp lại nguyên hàm ban đầu cần tính (theo hàng ngang) thì dừng lại luôn ở hàng đó, không tính tiếp nữa. a. Dấu hiệu khi dừng lại: nhận thấy trên cùng 1 hàng ngang tích của 2 phần tử ở 2 cột (không kể dấu và hệ số) giống nguyên hàm ban đầu cần tính. b. Ghi kết quả (nhân theo đường chéo) như các ví dụ trên. c. Nối 2 phần tử (ở dòng dừng lại), có thêm dấu ∫ trước kết quả và coi gạch nối là 1 đường chéo, sử dụng quy tắc đan dấu. IV. BÀI TẬP VẬN DỤNG (sưu tầm và biên soạn)
Phân loại dạng và phương pháp giải nhanh nguyên hàm - tích phân - Nguyễn Vũ Minh (Tập 1)
Tài liệu gồm 75 trang bao gồm lý thuyết, công thức nguyên hàm, phân dạng và bài tập nguyên hàm – tích phân có đáp án, tài liệu do thầy Nguyễn Vũ Minh biên soạn. Trích dẫn tài liệu : + F(x) và G(x) là các nguyên hàm của hàm số f(x) trên khoảng (a,b). Khi đó: (I) F(x) = G(x) + C (II) G(x) = F(x) + C Với C là một hằng số nào đó. Khẳng định nào sau đây là đúng? A. (I) đúng, (II) sai B. (I) sai, (II) đúng C. Cả (I) và (II) đều đúng D. Cả (I) và (II) đều sai [ads] + Nguyên hàm của hàm số: y = cos2x/[(sinx)^2.(cosx)^2]^2 là? A. tanx – cotx + C B. -tanx – cotx + C C. tanx + cotx + C D. cotx – tanx + C + Cho hàm số f(x) = sinx + cos2x. Tìm nguyên hàm F(x) của hàm số f(x) biết F(π/2) = π/2