Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết, các dạng toán và bài tập tứ giác

Tài liệu gồm 55 trang, tóm tắt lý thuyết, các dạng toán và bài tập tứ giác, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Hình học chương 1. Bài 1. Tứ giác. + Dạng 1. Tính góc của tứ giác. + Dạng 2. Vẽ tứ giác. + Dạng 3. Tính độ dài. Hệ thức giữa các độ dài. Bài 2. Hình thang. + Dạng 1. Tính góc của hình thang. + Dạng 2. Nhận biết hình thang, hình thang vuông. + Dạng 3. Tính toán và chứng minh về độ dài. Bài 3. Hình thang cân. + Dạng 1. Nhận biết hình thang cân. + Dạng 2. Sử dụng tính chất hình thang cân để tính số đo góc, độ dài đường thẳng. Bài 4. Đường trung bình của tam giác, của hình thang. + Dạng 1. Sử dụng đường trung bình của tam giác để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 2. Sử dụng đường trung bình của tam giác để chứng minh hai đường thẳng song song, chứng minh ba điểm thẳng hàng, tính góc. + Dạng 3. Sử dụng đường trung bình của hình thang để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 4. Sử dụng đường trung bình của hình thang để chứng minh hai đường thẳng song song, chứng minh ba đlểm thẳng hàng, tính góc. Bài 5. Dựng hình bằng thước và compa. Dựng hình thang. + Dạng 1. Dựng tam giác. + Dạng 2. Dựng hình thang. + Dạng 3. Dựng góc có số đo đặc biệt. + Dạng 4. Dựng tứ giác, dựng điểm hay đường thẳng thoả mãn một yêu cầu nào đó. Bài 6. Đối xứng trục. + Dạng 1. Vẽ hình, nhận biết hai hình đối xứng với nhau qua một trục. + Dạng 2. Sử dụng đối xứng trục để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm trục đối xứng của một hình, hình có trục đối xứng. + Dạng 4. Dựng hình, thực hành có sử dụng đối xứng trục. Bài 7. Hình bình hành. + Dạng 1. Nhận biết hình bình hành. + Dạng 2. Sử dụng tính chất của hình bình hành để chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau. + Dạng 3. Sử dụng tính chất đường chéo hình bình hành để chứng minh ba điểm thẳng hàng, chứng minh ba đường thẳng đồng quy. + Dạng 4. Dựng hình bình hành, hoặc dựng hình có liên quan đến hình bình hành. Bài 8. Đối xứng tâm. + Dạng 1. Vẽ hình đối xứng qua một tâm. + Dạng 2. Nhận biết hai điểm đối xứng với nhau qua một tâm. Sử dụng đối xứng tâm để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm tâm đối xứng của một hình, tìm hình có tâm đối xứng. + Dạng 4. Dựng hình có sử dụng đối xứng tâm. Bài 9. Hình chữ nhật. + Dạng 1. Nhận biết hình chữ nhật. + Dạng 2. Sử dụng tính chất hình chữ nhật để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tính chất đối xứng của hình chữ nhật. + Dạng 4. Áp dụng vào tam giác. + Dạng 5. Dựng hình chữ nhật. Bài 10. Đường thẳng song song với một đường thẳng cho trước. + Dạng 1. Đường thẳng song song cách đều. + Dạng 2. Chứng tỏ một điểm chuyển động trên một đường thẳng song song với một đường thẳng cho trước. + Dạng 3. Phát biểu một tập hợp điểm. Bài 11. Hình thoi. + Dạng 1. Nhận biết hình thoi. + Dạng 2. Sử dụng tính chất hình thoi để tính toán, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, các đường thẳng vuông góc. + Dạng 3. Tính chất đối xứng của hình thoi. + Dạng 4. Dựng hình thoi. Bài 12. Hình vuông. + Dạng 1. Nhận biết hình vuông. + Dạng 2. Sử dụng tính chất hình vuông để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tìm điều kiện để một hình trở thành hình vuông. + Dạng 4. Dựng hình vuông, cắt hình vuông. Ôn tập chương I.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương trình chứa dấu giá trị tuyệt đối
Nội dung Chuyên đề phương trình chứa dấu giá trị tuyệt đối Bản PDF - Nội dung bài viết Chuyên đề phương trình chứa dấu giá trị tuyệt đối Chuyên đề phương trình chứa dấu giá trị tuyệt đối Tài liệu này bao gồm 19 trang, tóm tắt lý thuyết quan trọng về phương trình chứa dấu giá trị tuyệt đối, phân loại và hướng dẫn cách giải các dạng toán liên quan. Nội dung tài liệu cũng bao gồm một loạt bài tập từ cơ bản đến nâng cao về chuyên đề phương trình này, kèm theo đáp án và lời giải chi tiết. Đặc biệt, tài liệu này được thiết kế để hỗ trợ học sinh trong quá trình học chương trình Đại số lớp 8 chương 4 với chủ đề Bất phương trình bậc nhất một ẩn. Trải qua các bài giảng, học sinh sẽ nhắc lại kiến thức về giá trị tuyệt đối và học cách giải các dạng phương trình chứa dấu giá trị tuyệt đối, bao gồm: Dạng 1: Phương trình |f(x)| = k với k là hằng số không âm. Dạng 2: Phương trình |f(x)| = |g(x)|. Dạng 3: Phương trình |f(x)| = g(x). Ở phần phương pháp giải toán, tài liệu cung cấp các bước chi tiết để giải từng dạng toán, như: Phương pháp giải dạng Toán lớp 1: Phán định giá trị tuyệt đối. Phương pháp giải dạng Toán lớp 2: Giải phương trình dạng |f(x)| = k với k là hằng số không âm. Phương pháp giải dạng Toán lớp 3: Giải phương trình dạng |f(x)| = |g(x)|. Phương pháp giải dạng Toán lớp 4: Giải phương trình dạng |f(x)| = g(x). Trong tài liệu này, học sinh sẽ được trải nghiệm và rèn luyện kỹ năng giải các phương trình chứa dấu giá trị tuyệt đối một cách tự tin và hiệu quả.
Chuyên đề bất phương trình bậc nhất một ẩn
Nội dung Chuyên đề bất phương trình bậc nhất một ẩn Bản PDF - Nội dung bài viết Chuyên đề bất phương trình bậc nhất một ẩn Chuyên đề bất phương trình bậc nhất một ẩn Chuyên đề này bao gồm 15 trang tài liệu, tóm tắt lý thuyết quan trọng cần nắm vững, phân loại dạng bài và hướng dẫn cách giải các dạng toán, lựa chọn bài tập từ cơ bản đến nâng cao về chuyên đề bất phương trình bậc nhất một ẩn. Tài liệu cung cấp đáp án và lời giải chi tiết, hỗ trợ các học sinh trong quá trình học tập chương trình Đại số 8 chương 4: Bất phương trình bậc nhất một ẩn. A. BÀI GIẢNG Định nghĩa Hai quy tắc biến đổi bất phương trình Quy tắc chuyển vế Quy tắc nhân với một số Giải bất phương trình bậc nhất một ẩn B. BÀI TẬP MINH HỌA Dạng 1: Điều kiện để một bất phương trình là bất phương trình bậc nhất một ẩn. Dạng 2: Giải bất phương trình bậc nhất một ẩn.
Chuyên đề bất phương trình một ẩn
Nội dung Chuyên đề bất phương trình một ẩn Bản PDF - Nội dung bài viết Chuyên đề Bất Phương Trình Một Ẩn Chuyên đề Bất Phương Trình Một Ẩn Tài liệu này bao gồm 09 trang, tập trung vào việc giúp học sinh nắm vững lý thuyết cơ bản về chuyên đề bất phương trình một ẩn, hướng dẫn phân loại dạng toán và giải các bài tập từ dễ đến khó. Nội dung tài liệu được tuyển chọn cẩn thận, có đáp án và lời giải chi tiết, giúp học sinh hiểu rõ hơn về chương trình đại số 8 chương 4: Bất phương trình bậc nhất một ẩn. Bài giảng: Bất phương trình một ẩn Tập nghiệm của bất phương trình Bất phương trình tương đương Phương pháp giải toán: Dạng Toán lớp 1: Tập nghiệm của bất phương trình Dạng Toán lớp 2: Hai bất phương trình tương đương Phiếu bài tự luyện: Dạng 1: Nhận dạng bất phương trình bậc nhất một ẩn Dạng 2: Giải bất phương trình Dạng 3: Các dạng toán khác Đây là tài liệu hữu ích để hỗ trợ học sinh trong quá trình học tập, giúp họ rèn luyện kỹ năng giải toán và nắm vững kiến thức liên quan đến bất phương trình một ẩn.
Chuyên đề liên hệ giữa thứ tự và phép cộng, liên hệ giữa thứ tự và phép nhân
Nội dung Chuyên đề liên hệ giữa thứ tự và phép cộng, liên hệ giữa thứ tự và phép nhân Bản PDF - Nội dung bài viết Tài liệu Chuyên đề liên hệ giữa thứ tự và phép cộng, liên hệ giữa thứ tự và phép nhân Tài liệu Chuyên đề liên hệ giữa thứ tự và phép cộng, liên hệ giữa thứ tự và phép nhân Tài liệu này bao gồm 12 trang, tập trung vào việc giải thích và áp dụng lý thuyết cơ bản về liên hệ giữa thứ tự và phép cộng, cũng như liên hệ giữa thứ tự và phép nhân. Nội dung chính bao gồm những phần sau đây: I. LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CỘNG 1. Nhắc lại về thứ tự trên tập số. 2. Bất đẳng thức. 3. Liên hệ giữa thứ tự và phép cộng. II. LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP NHÂN 1. Liên hệ giữa thứ tự và phép nhân với số lượng. 2. Liên hệ giữa thứ tự và phép nhân số âm. 3. Tính chất bắc cầu của thứ tự. Bên cạnh đó, tài liệu còn cung cấp hướng dẫn giải các dạng toán liên quan, từ cơ bản đến nâng cao. Các bài tập được tuyển chọn kỹ lưỡng để giúp học sinh nắm vững kiến thức và áp dụng chúng vào thực hành. Ngoài ra, tài liệu cũng đi kèm đáp án và lời giải chi tiết, giúp học sinh tự kiểm tra và tự học tập hiệu quả. Với nội dung dễ hiểu, cụ thể và đa dạng, tài liệu này sẽ là nguồn tư liệu hữu ích để học sinh rèn luyện kỹ năng và kiến thức theo chương trình Đại số 8 chương 4: Bất phương trình bậc nhất một ẩn.