Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Thái Thịnh Hà Nội

Nội dung Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Thái Thịnh Hà Nội Bản PDF Đề thi giữa học kỳ 2 môn Toán lớp 9 năm học 2022-2023 tại trường THCS Thái Thịnh, Hà Nội đã được công bố. Đề thi bao gồm 5 bài toán tự luận, thời gian làm bài là 90 phút. Đề thi có đáp án và lời giải chi tiết để học sinh tham khảo sau khi hoàn thành.

Một trong những bài toán trong đề thi yêu cầu học sinh giải bằng cách lập phương trình hoặc hệ phương trình. Đề bài yêu cầu học sinh giải vấn đề về kế hoạch sản xuất của hai tổ, nơi tổ I đã vượt mức 18% và tổ II đã vượt mức 21%. Trong thời gian quy định, họ đã hoàn thành tổng cộng 120 sản phẩm. Học sinh cần tính số sản phẩm được giao của mỗi tổ theo kế hoạch.

Bài toán tiếp theo liên quan đến Parabol và đường thẳng trong mặt phẳng tọa độ Oxy. Học sinh cần tìm tọa độ các giao điểm của đường thẳng và Parabol, sau đó tính diện tích tam giác tạo bởi các điểm đó.

Đề bài cuối cùng đề cập đến một vấn đề liên quan đến đường tròn, đường thẳng, và các điểm được kết nối với nhau. Học sinh sẽ phải chứng minh các tính chất của tứ giác và các điểm trên hình vẽ.

Nội dung của đề thi được biên soạn một cách cẩn thận để kiểm tra kiến thức và kỹ năng của học sinh. Việc giải quyết các bài toán đòi hỏi sự tỉ mỉ, logic và khả năng suy luận của học sinh. Hy vọng rằng đề thi sẽ giúp học sinh ôn tập và nắm vững kiến thức trước kỳ thi cuối kỳ sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Đống Đa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Đống Đa, quận Đống Đa, thành phố Hà Nội. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Đống Đa – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, hai tổ sản xuất phải làm tổng cộng 330 sản phẩm trong một thời gian nhất định. Thực tế, tổ I đã sản xuất vượt mức kế hoạch là 10% và tổ II làm giảm 15% so với kế hoạch nên cả hai tổ làm được 318 sản phẩm. Hỏi số sản phẩm được giao theo kế hoạch của mỗi tổ là bao nhiêu? + Cho đường tròn (O) và điểm A cố định nằm ngoài đường tròn. Đường thẳng d thay đổi đi qua A cắt đường tròn (O) tại hai điểm M và N (AM < AN, MN không là đường kính). Kẻ tiếp tuyến AB tới đường tròn (O) (B là tiếp điểm, B nằm trên cung lớn MN). Gọi E là trung điểm của MN. a) Chứng minh: Tứ giác ABOE là tứ giác nội tiếp. b) Chứng minh: Tam giác AMB đồng dạng với tam giác ABN và AM.AN = AB2. c) Lấy F là một điểm trên đoạn BE sao cho BF = 2EF. Chứng minh F luôn thuộc một đường tròn cố định khi đường thẳng d thay đổi và thỏa mãn điều kiện đề bài. + Trên mặt phẳng tọa độ cho parabol (P): y = -x2 và đường thẳng (d): y = 3x + m – 2. a) Điểm A(-2;4) có nằm trên parabol (P) không? Vì sao? b) Khi m = -2, tìm tọa độ giao điểm của parabol (P) và đường thẳng (d) bằng phương pháp đại số.
Đề giữa kỳ 2 Toán 9 năm 2023 - 2024 trường THTHCS Trường Thành - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường TH&THCS Trường Thành, huyện An Lão, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa kỳ 2 Toán 9 năm 2023 – 2024 trường TH&THCS Trường Thành – Hải Phòng : + Một du khách đi trên ô tô 4 giờ, sau đó đi tiếp bằng tàu hỏa trong 7 giờ được quãng đường dài 640km. Hỏi vận tốc tàu hỏa và ô tô biết rằng tàu hỏa đi nhanh hơn ô tô là 5km/h. + Cho nửa đường tròn (O) đường kính AB. Kẻ tiếp tuyến Bx với nửa đường tròn. Gọi C là điểm trên nửa đường tròn sao cho cung CB bằng cung CA, D là một điểm tuỳ ý trên cung CB (D khác C và B). Các tia AC, AD cắt tia Bx theo thứ tự ở E và F. a) Chứng minh: ∆ABE vuông cân. b) Chứng minh: FB.AD = AB.BD c) Chứng minh: 0 180 CDF CEF. + Số đo của góc có đỉnh ở bên ngoài đường tròn bằng A. nửa số đo cung bị chắn B. số đo cung bị chắn C. nửa tổng số đo hai cung bị chắn D. nửa hiệu số đo hai cung bị chắn.
Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Cầu Giấy, thành phố Hà Nội. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một tổ sản xuất phải làm 600 sản phẩm trong thời gian quy định. Khi làm xong 400 sản phẩm, tổ sản xuất đã tăng năng suất lao động mỗi ngày thêm 10 sản phẩm so với quy định. Vì vậy công việc được hoàn thành sớm hơn quy định 1 ngày. Hỏi lúc đầu mỗi ngày tổ sản xuất quy định làm được bao nhiêu sản phẩm? + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = -x + 2 và parabol (P): y = x2. a) Vẽ đồ thị hàm số của (d) và (P) trên cùng hệ tọa độ Oxy. b) Tìm tọa độ giao điểm A, B của (d) và (P). Tính diện tích tam giác OAB. + Cho đường tròn (O;R) và một điểm C nằm ngoài đường tròn. Qua C kẻ hai tiếp tuyến CM và CN với đường tròn (M, N là tiếp điểm). Kẻ cát tuyến CAB không đi qua tâm O (A nằm giữa B và C, tia CO nằm giữa tia CM và tia CB). Gọi I là trung điểm của AB. a) Chứng minh OICM là tứ giác nội tiếp và 5 điểm O, M, C, N, I cùng thuộc một đường tròn. b) Chứng minh CA.CB = CM2. c) Cho OC = 2R. Tính số đo góc MIN. d) Đường thẳng qua A song song với CM cắt MN tại E. Chứng minh IE // BM.
Đề giữa học kì 2 Toán 9 năm 2023 - 2024 trường THCS Ngô Gia Tự - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Ngô Gia Tự, quận Hai Bà Trưng, thành phố Hà Nội. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2023 – 2024 trường THCS Ngô Gia Tự – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai công nhân cùng sơn cửa cho một công trình trong 4 ngày thì xong việc. Nếu người thứ nhất làm một mình trong 9 ngày rồi người thứ hai đến cùng làm tiếp trong 1 ngày nữa thì xong việc. Hỏi nếu mỗi người làm một mình thì bao lâu xong việc? + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = mx + 2. a) Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2. b) Tìm tất cả các giá trị của m. + Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Kẻ đường phân giác AD của tam giác ABC, AD cắt đường tròn (O) tại điểm M (M khác A). Kẻ MI vuông góc với BC (I thuộc BC) và ME vuông góc với AB (E thuộc AB). Qua D kẻ đường thẳng vuông góc với BC, đường thẳng này cắt AI tại G. Qua D kẻ đường thẳng vuông góc với AB tại H. 1) Chứng minh bốn điểm B, E, M, I cùng thuộc một đường tròn. 2) Chứng minh AE AI AH AG. 3) Kẻ MF vuông góc với AC (F thuộc AC). Chứng minh ba điểm E, I, F thẳng hàng.