Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 thi Đại học năm 2019 - 2020 trường Hàm Rồng - Thanh Hóa

Chủ Nhật ngày 29 tháng 12 năm 2019, trường THPT Hàm Rồng, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng các môn học theo khối thi Đại học năm học 2019 – 2020, nhằm giúp học sinh rèn luyện để hướng đến kỳ thi THPT Quốc gia năm 2020. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề KSCL Toán 12 thi Đại học năm 2019 – 2020 trường Hàm Rồng – Thanh Hóa, đề thi gồm có 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài là 90 phút. Trích dẫn đề KSCL Toán 12 thi Đại học năm 2019 – 2020 trường Hàm Rồng – Thanh Hóa : + Cho khối chóp tam giác đều. Nếu tăng độ dài cạnh đáy lên hai lần và giảm chiều cao đi bốn lần thì thể tích của khối chóp đó sẽ: A. Tăng lên hai lần. B. Giảm đi hai lần. C. Giảm đi ba lần. D. Không thay đổi. + Có một bể hình hộp chữ nhật chứa đầy nước. Người ta cho ba khối nón giống nhau có thiết diện qua trục là một tam giác vuông cân vào bể sao cho ba đường tròn đáy của ba khối nón tiếp xúc với nhau, một khối nón có đường tròn đáy chỉ tiếp xúc với một cạnh của đáy bể và hai khối nón còn lại có đường tròn đáy tiếp xúc với hai cạnh của đáy bể. Sau đó người ta đặt lên đỉnh của ba khối nón một khối cầu có bán kính bằng 4/3 lần bán kính đáy của khối nón. Biết khối cầu vừa đủ ngập trong nước và lượng nước trào ra là 337π/3 (cm3). Tính thể tích nước ban đầu ở trong bể. [ads] + Ông An cần xây một hồ chứa nước với dạng khối hộp chữ nhật không nắp có thể tích bằng 500/3 m3. Đáy hồ là hình chữ nhật có chiều dài gấp đôi chiều rộng. Giá thuê nhân công để xây hồ (gồm 4 bức tường xung quanh và đáy) là 500.000 đồng/m2. Khi đó, kích thước của hồ nước như thế nào để chi phí thuê nhân công mà ông An phải trả thấp nhất: A. Chiều dài 20 m, chiều rộng 10 m và chiều cao 5/6 m. B. Chiều dài 20 m, chiều rộng 15 m và chiều cao 20/3 m. C. Chiều dài 10 m, chiều rộng 5 m và chiều cao 10/3 m. D. Chiều dài 30 m, chiều rộng 15 m và chiều cao 10/27 m. + Gọi A là tập hợp tất cả các số tự nhiên gồm 4 chữ số khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5, 6. Chọn ngẫu nhiên một số từ tập A. Tính xác suất để số chọn được là số chia hết cho 5. + Cho khối lăng trụ ABC.A’B’C’ có thể tích bằng 2019. Gọi M là trung điểm AA’; N, P lần lượt là các điểm nằm trên các cạnh BB’, CC’ sao cho BN = 2B’N, CP = 3C’P. Tính thể tích khối đa diện ABCMNP.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 12 lần 1 năm 2018 - 2019 trường THPT Đồng Đậu - Vĩnh Phúc
Đề KSCL Toán 12 lần 1 năm 2018 – 2019 trường THPT Đồng Đậu – Vĩnh Phúc mã đề 001 được biên soạn theo hình thức trắc nghiệm khách quan, đề gồm 6 trang với 50 câu hỏi và bài toán, yêu cầu học sinh hoàn thành bài làm trong thời gian 90 phút, đề nhằm kiểm tra năng lực môn Toán của học sinh khối 12 giai đoạn giữa học kỳ 1 để làm cơ sở đánh giá, xếp loại, tuyển chọn các em học sinh giỏi Toán 12, đồng thời cũng là một đợt thi thử THPT Quốc gia môn Toán, vì vậy, đề có những câu hỏi và bài toán thuộc kiến thức môn Toán 10, 11, đề thi có đáp án và lời giải chi tiết. Ma trận đề KSCL Toán 12 lần 1 năm 2018 – 2019 trường THPT Đồng Đậu – Vĩnh Phúc : + Hàm số. + Phương trình, bất phương trình. + Phương pháp tọa độ trong mặt phẳng. + Phương trình lượng giác. + Tổ hợp xác suất. + Phép biến hình. + Quan hệ song song. + Quan hệ vuông góc. + Đơn điệu của hàm số. + Cực trị của hàm số. + Giá trị lớn nhất, giá trị nhỏ nhất của hàm số. + Tiệm cận. + Đồ thị hàm số. + Khối đa diện, khối đa diện đều. + Thể tích khối đa diện.
Đề KSCL đầu năm 2018 - 2019 môn Toán 12 trường THPT Lê Văn Thịnh - Bắc Ninh
Đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh mã đề 132 được biên soạn theo hình thức tương tự như đề thi THPT Quốc gia với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, kỳ thi được tổ chức vào ngày 16/09/2018. Nội dung kiểm tra hướng đến gồm: nội dung chương trình Toán 11, chủ đề khảo sát và đồ thị hàm số, khối đa diện và thể tích. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh : + Cho hàm số y = f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau: (1) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị lớn nhất của f(x) trên [a;b]. (2) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị nhỏ nhất của f(x) trên [a;b]. (3) Nếu hàm số f(x) đạt cực đại tại điểm x0 và đạt cực tiểu tại điểm x1 (x0, x1 ∈ (a;b)) thì ta luôn có f(x0) > f(x1). Số khẳng định đúng là? [ads] + Cho hai đường thẳng cố định a và b chéo nhau. Gọi AB là đoạn vuông góc chung của a và b (A thuộc a, B thuộc b). Trên a lấy điểm M (khác A), trên b lấy điểm N (khác B ) sao cho AM = x, BN = y, x + y = 8. Biết AB = 6, góc giữa hai đường thẳng a và b bằng 60 độ. Khi thể tích khối tứ diện ABNM đạt giá trị lớn nhất hãy tính độ dài đoạn MN (trong trường hợp MN = 8). + Cho hàm số y = (x + 1)/(2 – x). Khẳng định nào sau đây đúng? A. Hàm số đã cho đồng biến trên từng khoảng xác định của nó. B. Hàm số đã cho đồng biến trên khoảng (-∞;2) ∪ (2;+∞). C. Hàm số đã cho đồng biến trên R. D. Hàm số đã cho nghịch biến trên từng khoảng xác định của nó.
Đề KSCL đầu năm Toán 12 năm học 2017 - 2018 trường THCS - THPT Khai Minh - TP. HCM
Đề khảo sát chất lượng đầu năm lớp 12 năm học 2017 – 2018 môn Toán trường THCS – THPT Khai Minh – TP. HCM gồm 50 câu trắc nghiệm, có đáp án. Trích một số bài toán trong đề : + Cho khối chóp tam giác S.ABC có cạnh đáy là tam giác vuông tại A, AC = a, BC = 2a. Hình chiếu của S trên (ABC) là trung điểm H của BC. Cạnh bên SB tạo với đáy một góc 60 độ.Tính theo a thể tích của khối chóp S.ABC. + Hình chóp S.ABC có SA = SB = SC, đáy tam giác ABC vuông tại A có AB =1, AC = 2, góc giữa mặt phẳng (SAB) và mặt phẳng (ABC) bằng 60 độ. Tính thể tích khối chóp. + Điểm trong của khối lăng trụ là điểm: A. Không thuộc khối lăng trụ B. Thuộc khối lăng trụ và thuộc hình lăng trụ C. Thuộc hình lăng trụ D. Thuộc khối lăng trụ nhưng không thuộc hình lăng trụ
Đề KSCL đầu năm lớp 12 năm học 2017 - 2018 môn Toán trường THPT Thuận Thành 1 - Bắc Ninh
Đề khảo sát chất lượng đầu năm lớp 12 năm học 2017 – 2018 môn Toán trường THPT Thuận Thành 1 – Bắc Ninh gồm 50 câu trắc nghiệm, có đáp án. Trích một số bài toán trong đề : + Trong dịp hội trại hè 2017 bạn A thả một quả bóng cao su từ độ cao 3m so với mặt đất, mỗi lần chạm đất quả bóng lại nảy lên một độ cao bằng hai phần ba độ cao lần rơi trước. Tổng quãng đường quả bóng đã bay (từ lúc thả bóng cho đến lúc bóng không nảy nữa) khoảng? + Lập số có 9 chữ số, mỗi chữ số thuộc thuộc tập hợp {1,2,3,4} trong đó chữ số 4 có mặt 4 lần, chữ số 3 có mặt 3 lần, các chữ số còn lại có mặt đúng một lần. Số các số lập được là? + Đề thi trắc nghiệm môn Toán gồm 50 câu hỏi, mỗi câu có 4 phương án trả lời trong đó chỉ có một phương án trả lời đúng. Mỗi câu trả lời đúng được 0,2 điểm. Một học sinh không học bài nên mỗi câu trả lời đều chọn ngẫu nhiên một phương án. Xác suất để học sinh đó được đúng 5 điểm là?