Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 2 năm 2019 - 2020 trường Tam Dương - Vĩnh Phúc

Ngày … tháng 01 năm 2020, trường THPT Tam Dương, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát kiến thức THPT môn Toán 12 lần 2 năm học 2019 – 2020. Đề khảo sát Toán 12 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc mã đề 123 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc : + Một người vay ngân hàng 200 triệu đồng theo hình thức trả góp hàng tháng, lãi suất ngân hàng cố định 0,8% một tháng. Mỗi tháng người đó phải trả một số tiền cố định không đổi tới hết tháng 48 thì hết nợ(lần đầu tiên phải trả là một tháng sau khi vay). Tổng số tiền lãi người đó phải trả trong quá trình nợ là bao nhiêu (làm tròn kết quả đến hàng nghìn)? + Cho khối hộp chữ nhật ABCD.A’B’C’D’ có M, N, P lần lượt là trung điểm các cạnh BC, C’D’, DD’ (tham khảo hình vẽ). Biết thể tích khối hộp bằng 48. Thể tích tứ diện AMNP bằng? [ads] + Cho khối lăng trụ tam giác ABC.A’B’C’. Gọi M là trung điểm cạnh BB’, N là điểm thuộc cạnh AA’ sao cho AA’ = 4AN. Mặt phẳng (C’MN) chia khối lăng trụ thành hai phần, phần chứa điểm A có thể tích V2, phần còn lại có thể tích V1. Tỷ số V1/V2 = a/b với a, b là số tự nhiên và phân số a/b tối giản. Tổng a + b bằng? + Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số. Lấy ngẫu nhiên hai số từ S. Xác suất để trong 2 số lấy được có đúng một số chia hết cho 4 gần với số nào sau đây nhất? + Cho lăng trụ đều ABC.A’B’C’ có cạnh đáy và chiều cao cùng bằng 6. Gọi M, N, P lần lượt là tâm các hình vuông ABB’A’, BCC’B’, ACC’A’ và I, J lần lượt là trọng tâm các tam giác ABC và A’B’C’. Thể tích khối đa diện IMNPJ bằng?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 102); kỳ thi được diễn ra vào ngày … tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Trong không gian Oxyz, cho hai điểm A(2;-2:6), B(3;3;-9) và mặt phẳng (P): 2x + 2y – z – 12 = 0. Điểm M di động trên (P) sao cho MA và MB luôn tạo với (P) các góc bằng nhau. Biết M luôn thuộc một đường tròn cố định. Tung độ của tâm đường tròn đó bằng? + Cho hàm số y = f(x) có đạo hàm cấp hai liên tục trên R. Hình vẽ bên dưới là đồ thị hàm số y = f'(x) trên (-vc;-2], đồ thị hàm số y = f(x) trên đoạn [-2;3] và đồ thị hàm số y = f”(x) trên [3;+vc). Số điểm cực trị tối đa của hàm số y = f(x) là? + Cho hàm số f(x) = ax4 + bx2 + c có đồ thị như hình vẽ. Biết miền tô đậm có diện tích bằng 4/15 và điểm B có hoành độ bằng -1. Số giá trị nguyên của tham số m thuộc đoạn [-3;3] để hàm số y = f(m – 3^x) có đúng một điểm cực trị là?
Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa
Nội dung Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi đánh giá chất lượng môn Toán lớp 12 năm học 2021 – 2022 trường Đại học Hồng Đức, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề đánh giá chất lượng Toán lớp 12 năm 2021 – 2022 trường Đại học Hồng Đức – Thanh Hóa : + Cho hình nón đỉnh S có độ dài đường cao là R và đáy là đường tròn tâm O bán kính R. Gọi (d) là tiếp tuyến của đường tròn đáy tại A và (P) là mặt phẳng chứa SA và (d). Mặt phẳng (Q) thay đổi qua S cắt đường tròn O tại hai điểm C, D sao cho CD = √3R. Gọi α là góc tạo bởi (P) và (Q). Tính giá trị lớn nhất của cos α. + Cho hàm số f(x) = x3 + ax2 + bx + c (a, b, c ∈ R) có hai điểm cực trị là −1 và 1. Gọi y = g(x) là hàm số bậc hai có đồ thị cắt trục hoành tại hai điểm có hoành độ trùng với các điểm cực trị của f(x), đồng thời có đỉnh nằm trên đồ thị của f(x) với tung độ bằng 2. Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) gần với giá trị nào nhất dưới đây? + Cho hàm đa thức y = fx2 + 2x có đồ thị cắt trục Ox tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số m với 2022m ∈ Z để hàm số g (x) = fx2 − 2 |x − 1| − 2x + m có 9 điểm cực trị?