Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán GTLN - GTNN biểu thức mũ - lôgarit nhiều biến số

Tài liệu gồm 36 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán GTLN – GTNN biểu thức mũ – lôgarit nhiều biến số; đây là dạng toán VDC thường gặp trong chương trình Toán 12 phần Giải tích chương 2. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT HAI BIẾN SỐ Cách 1: Đánh giá áp dụng BĐT cơ bản đã biết như BĐT Côsi và BĐT Bunhiacopxki. Cách 2: Áp dụng phương pháp hàm số, hàm đặc trưng. Thông thường ta thực hiện theo các bước sau: Biến đổi các số hạng chứa trong biểu thức về cùng một đại lượng giống nhau. Đưa vào một biến mới t bằng cách đặt t bằng đại lượng đã được biến đổi như trên. Xét hàm số f t theo biến t. Khi đó ta hình thành được bài toán tương đương sau: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Lúc này ta sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Chú ý : Ta chứng minh được: Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D mà phương trình fx k có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và hàm số y gx luôn nghịch biến (hoặc luôn đồng biến) và liên tục trên D mà phương trình f x gx có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D thì fx fy nếu x y (hoặc x y). Cách 3: Áp dụng hình học giải tích. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT NHIỀU BIẾN SỐ Cho xyz lần lượt là các số thực dương và thỏa mãn hệ phương trình sau 3log 3 3log 27 log 81 0 x y 3 3 x z xy yz. Khi biểu thức 5 4 P xyz đạt giá trị nhỏ nhất thì giá trị của 1000P nằm trong khoảng nào? Cho các số thực không âm abc thỏa mãn 2484 abc. Gọi M m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S a b c 2 3. Giá trị của biểu thức 4 log M M m bằng? Cho ba số thực thay đổi abc 1 thỏa mãn abc 6. Gọi 1 2 x x là hai nghiệm của phương trình 2 log 2 log 3log log 2022 0 a a aa x b cx. Khi đó giá trị lớn nhất của 1 2 x x là?

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm lũy thừa, mũ và logarit trong các đề thi thử Toán 2018
giới thiệu đến bạn đọc tài liệu trắc nghiệm lũy thừa, mũ và logarit trong các đề thi thử Toán 2018, tài liệu gồm 502 trang tuyển chọn các câu hỏi và bài toán trắc nghiệm chủ đề lũy thừa, mũ và logarit có lời giải chi tiết trong các đề thi thử môn Toán năm 2018, các câu hỏi và bài tập được sắp xếp theo độ khó tăng dần và phân loại thành các mức độ nhận thức, phù hợp với nhiều đối tượng học sinh. Trích dẫn tài liệu trắc nghiệm lũy thừa, mũ và logarit trong các đề thi thử Toán 2018 : + (THPT Kim Liên – Hà Nội năm 2017 – 2018) Cho hàm số f(x) = (x^2 – 2x + 2)e^x. Chọn mệnh đề sai? A. Hàm số có 1 điểm cực trị. B. Hàm số đồng biến trên R. C. Hàm số không có giá trị lớn nhất và giá trị nhỏ nhất. D. f(-1) = 5/e. [ads] + (Đề tham khảo BGD năm 2017 – 2018) Có bao nhiêu giá trị nguyên dương của tham số m để phương trình 16^x – 2.12^x + (m – 2)9^x = 0 có nghiệm dương? + (THPT Lục Ngạn – Bắc Ninh – lần 1 năm 2017 – 2018) Một cô giáo dạy Văn gửi 200 triệu đồng loại kỳ hạn sáu tháng vào một ngân hàng với lãi suất 69/20% một kì. Hỏi sau 6 năm 9 tháng cô giáo nhận được số tiền cả gốc và lãi là bao nhiêu biết cô giáo không rút lãi ở tất cả các kì hạn trước và nếu rút trước ngân hàng sẽ trả lãi suất theo loại lãi suất không kì hạn 0,002% trên ngày?
Tuyển tập mũ và logarit trong các đề thi thử môn Toán 2018 có đáp án - Nguyễn Nhanh Tiến (Phần 1)
Tài liệu gồm 14 trang tuyển chọn 106 bài toán chủ đề mũ và logarit trong các đề thi thử môn Toán 2018, đề khảo sát chất lượng giữa HK1 Toán 12 và một số bài toán chọn lọc, tài liệu được tổng hợp và biên soạn bởi thầy Nguyễn Hữu Nhanh Tiến, các bài tập đều có đáp án. Trích dẫn tài liệu : + (Toán học tuổi trẻ Tháng 10 2017). Cho hai hàm số f(x) = log2 x, g(x) = 2^x. Xét các mệnh đề sau: (I). Đồ thị hai hàm số đối xứng nhau qua đường thẳng y = x (II). Tập xác định của hai hàm số trên là R (III). Đồ thị hai hàm số cắt nhau tại đúng 1 điểm (IV). Hai hàm số đều đồng biến trên tập xác định của nó Có bao nhiêu mệnh đề đúng trong các mệnh đề trên? A. 2   B. 3   C. 1   D. 4 [ads] + (Khảo sát giữa kì 1 Chuyên ĐH Vinh). Cho α là một số thực dương khác 1. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau: 1. Hàm số y = logα x có tập xác định là D = (0; +∞) 2. Hàm số y = logα x là hàm đơn điệu trên khoảng (0; +∞) 3. Đồ thị hàm số y = logα x và đồ thị hàm số y = α^x đối xứng nhau qua đường thẳng y = x 4. Đồ thị hàm số y = logα x nhận Ox là một tiệm cận A. 4   B. 1   C. 3   D. 2 + (Giữa học kì 1 lớp 12 Chuyên Lê Hồng Phong – Nam Định). Cho hai hàm số y = f(x) = loga x và y = g(x) = a^x. Xét các mệnh đề sau: I. Đồ thị hàm số f(x) và g(x) luôn cắt nhau tại một điểm II. Hàm số f(x) + f(x) đồng biến khi a > 1, nghịch biến khi 0 < a < 1 III. Đồ thị hàm số f(x) nhận trục Oy làm tiệm cận IV. Chỉ có đồ thị hàm số f(x) có tiệm cận Số mệnh đề đúng là: A. 1   B. 2   C. 3   D. 4 Lưu ý :  Bạn đọc có thể tìm kiếm lời giải chi tiết bài tập mũ và logarit có trong tài liệu này tại chuyên mục đề thi thử môn Toán.
Hướng dẫn giải các bài toán về hàm số lũy thừa, mũ và logarit trong đề thi THPT QG 2017 - Dương Trác Việt
Tài liệu gồm 16 trang cung cấp một số cách giải quyết những bài tập về hàm số lũy thừa, mũ và logarit trong đề thi THPT Quốc Gia 2017 môn Toán. Bài viết ưu tiên đề cập loạt kỹ thuật giải nhanh theo định hướng trắc nghiệm, các câu hỏi vận dụng cao sẽ được trình bày chi tiết theo lối tự luận truyền thống.
Phân loại câu hỏi chuyên đề khảo sát hàm số và mũ - logarit - Lê Minh Cường
Tài liệu gồm 90 trang với 707 bài toán trắc nghiệm có đáp án thuộc các chuyên đề khảo sát hàm số và hàm số lũy thừa – mũ – logarit. Khảo sát hàm số 1.1 Đơn điệu 1.2 Cực trị 1.3 Min-Max 1.4 Tiệm cận 1.5 Đồ thị – Tương giao 1.6 Tiếp tuyến [ads] Hàm số lũy thừa – mũ – lôgarit 2.1 Hàm số lũy thừa 2.2 Công thức lôgarit 2.3 Hàm số mũ – lôgarit 2.4 Phương trình mũ – lôgarit 2.5 Bất phương trình mũ – lôgarit Các bài toán được phân loại theo mức độ nhận biết, thông hiểu, vận dụng thấp và vận dụng cao.