Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 chuyên 2023 lần 1 Toán chung trường THPT chuyên ĐHSP Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên năm 2023 lần 1 môn Toán chung trường THPT chuyên Đại học Sư phạm Hà Nội, thành phố Hà Nội; kỳ thi được diễn ra vào chiều Chủ Nhật ngày 26 tháng 03 năm 2023. Trích dẫn Đề thi thử vào 10 chuyên 2023 lần 1 Toán chung trường THPT chuyên ĐHSP Hà Nội : + Một kho hàng nhập gạo (trong kho chưa có gạo) trong 3 ngày liên tiếp và mỗi ngày (kể từ ngày thứ hai) đều nhập một lượng gạo bằng 150% lượng gạo đã nhập vào kho trong ngày trước đó. Từ ngày thứ tư kho ngừng nhập và mỗi ngày kho lại xuất một lượng gạo bằng 1/10 lượng gạo trong kho ở ngày trước đó. Hãy tính lượng gạo kho hàng nhập ngày thứ nhất trong mỗi trường hợp sau: a) Ngày thứ ba, sau khi nhập xong thì trong kho có 380 tấn gạo. b) Số gạo đã xuất trong ngày thứ năm là 342 tấn. + Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB tới (O) (A, B là các tiếp điểm). Gọi I là giao điểm của AB với OM; E là giao điểm của đoạn thẳng MO với (O). a) Chứng minh E là tâm đường tròn nội tiếp tam giác MAB. b) Gọi I là trung điểm của MH. Đường thẳng AI cắt (O) tại điểm K (K khác A). Tính số đo góc AKH. c) Chứng minh KE là tia phân giác của góc MKH. + Xét các số thực a, b, c thay đổi luôn thỏa mãn 1 =< a, b, c =< 2. Tìm giá trị lớn nhất của biểu thức M.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 – 2022 sở GD&ĐT Quảng Nam; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 03 – 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 – 2022 sở GD&ĐT Quảng Nam : + Cho parabol (P): 2 y x và đường thẳng (d) y m x m 2 2 (m là tham số). Chứng minh rằng (d) luôn cắt (P) tại hai điểm A, B sao cho 1 1 2 M là trung điểm của đoạn thẳng AB, hai điểm H, K lần lượt là hình chiếu vuông góc của A, B trên trục hoành. Tính độ dài đoạn thẳng KH. + Cho hình vuông ABCD tâm O, điểm E nằm trên đoạn thẳng OB (E khác O, B), H là hình chiếu vuông góc của C trên đường thẳng AE. Gọi F là giao điểm của AC và DH. a) Chứng minh HD là tia phân giác của góc AHC. b) Chứng minh diện tích hình vuông ABCD bằng hai lần diện tích tứ giác AEFD. + Cho tam giác nhọn ABC (AB < AC). Đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F, E. Gọi H là giao điểm của BE và CF, đường thẳng AH cắt BC tại D. a) Chứng minh tứ giác ODFE nội tiếp đường tròn. b) Gọi K là giao điểm của AH và EF, I là trung điểm của AH. Đường thẳng CI cắt đường tròn (O) tại M (M khác C). Chứng minh CI vuông góc với KM.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Bình; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm (do sở Giáo dục và Đào tạo tỉnh Quảng Bình công bố); kỳ thi được diễn ra vào ngày 08 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Bình : + Tìm tất cả các số nguyên dương n sao cho hai số 2 n n 2 7 và 2 n n 2 12 đều là lập phương của hai số nguyên dương nào đó. + Cho tam giác nhọn ABC nội tiếp đường tròn O đường kính AE. Gọi D là một điểm bất kì trên cung BE không chứa điểm A (D khác B và E). Gọi H I K lần lượt là hình chiếu vuông góc của D lên các đường thẳng BC CA và AB. a) Chứng minh ba điểm H I K thẳng hàng. b) Chứng minh AC AB BC DI DK DH. c) Gọi P là trực tâm của ABC, chứng minh đường thẳng HK đi qua trung điểm của đoạn thẳng DP. + Trong mặt phẳng tọa độ Oxy, cho parabol 2 P y x và đường thẳng d y mx m 2 1 (với m là tham số). Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt có hoành độ 1 2 x x thỏa mãn 1 2 x x 3.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 - 2022 sở GDĐT Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Ninh Thuận; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Ninh Thuận : + Trên một khúc sông xuôi dòng từ bến A đến bến B dài 80 km, một chiếc thuyền đi xuôi dòng từ bến A đến bến B rồi sau đó đi ngược dòng đến bến A mất tất cả 9 giờ. Biết rằng, thời gian chiếc thuyền ngược dòng trên khúc sông này nhiều hơn xuôi dòng 1 giờ. Tính vận tốc của dòng nước. + Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi H là chân đường cao hạ từ đỉnh A của tam giác ABC. Chứng minh BAH OAC. + Cho tam giác nhọn ABC có trực tâm H và các đường cao AD, BE, CF. Gọi I và K lần lượt là hình chiếu vuông góc của H trên EF và ED. Hai đường thẳng IK và AD cắt nhau tại M. Hai đường thẳng FM và DE cắt nhau tại N. Gọi S là điểm đối xứng của B qua D. Chứng minh ba điểm A, N, S thẳng hàng.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Lào Cai; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Lào Cai : + Một người dự định đi xe đạp từ A đến B cách nhau 40km trong một thời gian nhất định. Sau khi đi được 20km người đó đã dừng lại nghỉ 20 phút. Do đó để đến B đúng thời gian dự định người đó phải tăng vận tốc thêm 3km/h. Tính vận tốc dự định của người đó. + Cho tam giác nhọn ABC không cân (AB < AC) có đường tròn ngoại tiếp (O; R) và đường tròn nội tiếp (I; r). Đường tròn (I; r) tiếp xúc với các cạnh BC CA AB lần lượt tại D, E, F. Kéo dài AI cắt BC tại M và cắt đường tròn (O;R) tại điểm thứ 2 là N (N khác A). Gọi Q là giao điểm của AI và FE. Nối AD cắt đường tròn (I; r) tại điểm thứ 2 là P (P khác D). Kéo dài DQ cắt đường tròn (I; r) tại điểm thứ 2 là T (T khác D). Chứng minh rằng. + Cho p là số nguyên tố sao cho tồn tại các số nguyên dương x y thỏa mãn 3 3 x y p xy 6 8. Tìm giá trị lớn nhất của p.