Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa kỳ 1 Toán 11 năm 2019 - 2020 trường Ngô Gia Tự - Phú Yên

giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 11 đề kiểm tra giữa kỳ 1 Toán 11 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Phú Yên, có 04 mã đề: 132, 209, 357, 485; đề gồm có 02 trang với 20 câu trắc nghiệm, nội dung kiểm tra thuộc chủ đề: tổ hợp và xác suất, đề thi có đáp án. Trích dẫn đề kiểm tra giữa kỳ 1 Toán 11 năm 2019 – 2020 trường Ngô Gia Tự – Phú Yên : + Có bao nhiêu cách trao 18 cuốn sách bao gồm 7 cuốn sách Toán, 6 cuốn sách Lý và 5 cuốn sách Hóa (các cuốn sách cùng thể loại thì giống nhau) để làm phần thưởng cho 9 học sinh, mà mỗi học sinh nhận được 2 cuốn sách khác thể loại (không tính thứ tự các cuốn sách)? + Lớp 10A4 cử đại diện 3 học sinh, 11A5 cử đại diện 4 học sinh, 12A6 cử đại diện 5 học sinh đi đại hội (ngồi bàn tròn). Hỏi có bao nhiêu cách xếp 12 học sinh vào bàn sao cho các thành viên của mỗi lớp ngồi cạnh nhau? [ads] + Có bao nhiêu cách phân phối 5 đồ vật khác nhau cho 3 người sao cho một người nhận 1 đồ vật, còn hai người kia mỗi người nhận 2 đồ vật? + Gia đình bạn A có nuôi 2 con Bò, 3 con Trâu. Hỏi bạn A có bao nhiêu cách chọn 2 con vật nuôi, mà có cả Bò và Trâu? + Gia đình bạn A có nuôi 2 con Bò, 3 con Trâu. Hỏi bạn A có bao nhiêu cách chọn 1 con vật nuôi bất kỳ?

Nguồn: toanmath.com

Đọc Sách

Đề minh họa giữa kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Phú Hòa - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề minh họa kiểm tra giữa học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Phú Hòa, thành phố Hồ Chí Minh; đề thi được biên soạn theo cấu trúc 100% tự luận với 09 bài toán, thời gian làm bài 60 phút. Trích dẫn Đề minh họa giữa kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Phú Hòa – TP HCM : + Trong một đội bóng đá có 25 thành viên. Trong ngày gặp mặt cuối năm, mỗi thành viên trong đội chào nhau bằng một cái bắt tay một lần với tất cả các thành viên trong đội. Hỏi có tất cả bao nhiêu cái bắt tay? + Có 30 học sinh của trường THPT Phú Hòa tham gia câu lạc bộ ngoại ngữ của nhà trường, trong đó có 15 học sinh nói được tiếng Anh, 15 học sinh nói được tiếng Pháp và số học sinh còn lại chỉ nói được tiếng Nhật. Hỏi có bao nhiêu cách chọn 3 học sinh trong đó có một học sinh chỉ biết tiếng Anh, một học sinh chỉ biết tiếng Nhật và một học sinh biết cả hai thứ tiếng cả Anh và Pháp, biết trong số 30 học sinh đó có 10 học sinh nói được cả hai thứ tiếng Anh và Pháp? + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi P, Q lần lượt là hai điểm nằm trên cạnh SC, SD sao cho P Q không song song với CD. Gọi O là giao điểm của AC và BD. a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SAD). b) Tìm giao tuyến của hai mặt phẳng (SBC) và (AOQ). c) Tìm giao điểm của đường thẳng AB và mặt phẳng (OPQ).
7 đề ôn tập giữa kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Thủ Đức - TP HCM
Tài liệu gồm 08 trang, tuyển tập 7 đề ôn tập kiểm tra chất lượng giữa học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Thủ Đức, thành phố Hồ Chí Minh; các đề được biên soạn theo hình thức tự luận 100%, thời gian làm bài 90 phút. Trích dẫn 7 đề ôn tập giữa kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Thủ Đức – TP HCM : + Cho hàm số y f x xác định trên R và có bảng biến thiên như hình bên duới a) Hãy mô tả chiều biến thiên của hàm số f x trên π 7π 3 6. b) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f x trên π 5π 6 3. c) Tìm nghiệm của phương trình 2 f x f x 4 3 0 với π 5π 3 3. d) Giải phương trình 2 3 2 0 cos3 1 f x f x x với π 7π 6 6 x. + Nhiệt độ trung bình hằng ngày T (tính bằng độ Fahrenheit) tại Kansas City, Missouri, Mỹ được mô hình bởi công thức 2 54 25 2sin 4 3 12 t T trong đó t được đo bằng tháng và t = 0 ứng với ngày 1 tháng 1. Hỏi nhiệt độ trung bình hằng ngày cao nhất và thấp nhất là bao nhiêu? + Một đoàn tàu có 3 toa chở khách. Toa I, II, III. Trên sân ga có 4 khách chuẩn bị đi tàu. Biết mỗi toa có ít nhất 4 chỗ trống. Hỏi a) Có bao nhiêu cách sắp xếp cho 4 vị khách lên 3 toa? b) Có bao nhiêu cách sắp xếp cho 4 vị khách lên tàu có 1 toa có 3 trong 4 vị khách nói trên?
Đề giữa kì 1 Toán 11 năm 2022 - 2023 trường THPT Nguyễn Hữu Huân - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra chất lượng giữa học kì 1 môn Toán 11 năm học 2022 – 2023 trường THPT Nguyễn Hữu Huân, thành phố Hồ Chí Minh (dạng đề 110% tự luận); bao gồm đề thi dành cho các lớp: lớp 11 cơ bản, lớp 11 chuyên, lớp 11 tích hợp. Trích dẫn Đề giữa kì 1 Toán 11 năm 2022 – 2023 trường THPT Nguyễn Hữu Huân – TP HCM : + Cho tập hợp A = {1; 2; 3; 4; 5; 6; 7}. a) Có thể lập bao nhiêu số tự nhiên lẻ có 3 chữ số khác nhau được lấy từ tập A. b) Có thể lập bao nhiêu số tự nhiên chia hết cho 6 có 3 chữ số khác nhau được lấy từ tập A. + Cần xếp 10 học sinh ngồi vào một dãy 10 ghế. Hỏi có bao nhiêu cách xếp 10 học sinh này ngồi vào dãy ghế sao cho bạn Nga (một thành viên trong nhóm) ngồi vào ghế ngoài cùng bên trái? + Biển số xe máy của tỉnh T gồm 2 dòng có dạng như hình bên: Dòng thứ nhất là 63 XY, với X là một trong 26 chữ cái, Y là một trong 10 chữ số. Dòng thứ hai là abc.de, trong đó a, b, c, d, e là các chữ số. Hỏi có tổng cộng bao nhiêu biển số xe có thể lập được.
Đề giữa học kì 1 Toán 11 năm 2022 - 2023 trường Nguyễn Tất Thành - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra chất lượng giữa học kì 1 môn Toán 11 năm học 2022 – 2023 trường THCS và THPT Nguyễn Tất Thành, Đại học Sư phạm Hà Nội, thành phố Hà Nội; đề thi mã đề 111 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận theo thang điểm 30% trắc nghiệm + 70% tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề). Trích dẫn Đề giữa học kì 1 Toán 11 năm 2022 – 2023 trường Nguyễn Tất Thành – Hà Nội : + Trong đội Xung kích của trường, khối 10 có 35 học sinh, khối 11 có 42 học sinh và khối 12 có 36 học sinh. Nhà trường cần chọn ba học sinh tham gia trực An toàn giao thông vào sáng thứ Hai, trong đó có học sinh của cả ba khối. Số cách chọn của nhà trường là? + Cho hình chóp S.ABCD có O là giao điểm của AC và BD. Gọi M là điểm nằm trên cạnh SC. Khi đó AM cắt mặt phẳng (SBD) tại điểm I được xác định như sau A. I là giao điểm của AM với BD. B. I là giao điểm của AM với SC. D. I là giao điểm của AM với SO. C. I là giao điểm của AM với SD. + Từ tập hợp A = {0; 1; 2; 3; 4; 5}, hỏi a. Lập được bao nhiêu số tự nhiên gồm ba chữ số khác nhau chia hết cho 5? b. Lập được bao nhiêu số tự nhiên gồm ba chữ số khác nhau chia hết cho 9?