Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Hồ Thị Bi TP HCM

Nội dung Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Hồ Thị Bi TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Hồ Thị Bi, thành phố Hồ Chí Minh; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 440. Trích dẫn Đề cuối học kỳ 1 Toán lớp 10 năm 2022 – 2023 trường THPT Hồ Thị Bi – TP HCM : + Cho các số liệu thống kê ghi trong bảng sau là khối lượng (đơn vị: kilogam) của 10 con heo ở trang trại nhà bạn Lan: 4 5 6 7 5 8 5 6 5 7. Hãy lập bảng tần số; xác định số kilogram trung bình và số trung vị của mẫu số liệu trên. + Cho hình bình hành ABCD có cạnh AB a AD a 3 5 góc BAD bằng 0 120. a) Tính tích vô hướng AB AD. b) Tính tích vô hướng BD CB. + Cho tam giác ABC vuông cân tại A có cạnh AB 2 AD là đường trung tuyến và M là trung điểm AD. a) Chứng minh 2 0 MA MB MC. b) Gọi I là trung điểm của đoạn thẳng DB. Tính độ dài véc-tơ u biết u CA IM 4.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Mạc Đĩnh Chi - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Mạc Đĩnh Chi, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Mạc Đĩnh Chi – TP HCM : + Xác định a, b, c để parabol (P): y = ax2 + bx + c đi qua ba điểm A(1;4), B(-1;20) và C(2;2). + Cho tam giác ABC có AB = 10; AC = 6; góc BAC = 60 độ. Tính độ dài cạnh BC và độ dài đường cao AH của tam giác ABC. + Cho 2 =< x =< 5. Tìm GTNN của hàm số f(x) = (2 – x)√(5 – x).
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Marie Curie - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Marie Curie, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Marie Curie – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(3;0), B(4;5) và C(8;-1). Chứng minh rằng tam giác ABC cân. Tìm tọa độ chân đường cao H kẻ từ đỉnh A của tam giác ABC. + Tìm tất cả các giá trị của tham số m để phương trình √(2x^2 – x + m) = x – 2 có nghiệm. + Cho hàm số y = -2×2 + 4x + 6 có đồ thị là parabol (P). a) Tìm tọa độ đỉnh I và phương trình trục đối xứng của parabol (P). b) Tìm tọa độ giao điểm của đồ thị (P) và trục hoành. Tính khoảng cách giữa hai giao điểm đó.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Trung Trực - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Trung Trực, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Trung Trực – TP HCM : + Trong mặt phẳng tọa độ Oxy cho A (–2;–2), B (3;8), C (6;2). a) Chứng minh A, B, C là ba đỉnh của tam giác và tìm tọa độ trọng tâm G của tam giác ABC. b) Tìm điểm D sao cho ABCD là hình bình hành và tìm tọa độ tâm I của hình bình hành. c) Chứng minh tam giác ABC vuông và tính diện tích của tam giác. d) Tìm tọa độ H là chân đường cao hạ từ đỉnh góc vuông xuống cạnh huyền của tam giác ABC. + Định tham số m để phương trình sau có tập nghiệm là R: m2(x + 1) – 1 = (4 – 3m)x. + Định tham số m để phương trình: (m + 1)x2 + 2(m – 2)x + m = 0 có hai nghiệm phân biệt.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Thăng Long - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Thăng Long, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Thăng Long – TP HCM : + Cho Parabol (P): y = -x2 – 2x + 2 và đường thẳng (d): y = 2x – 3. a) Lập bảng biến thiên và vẽ đồ thị (P). b) Tìm giao điểm của (P) và (d). + Cho tam giác ABC, có tọa độ các đỉnh A(2;4), B(1;2), C(6;2). a) Tìm tọa độ trung điểm của cạnh AC và trọng tâm G của tam giác ABC. b) Chứng minh ABC là tam giác vuông và tính diện tích tam giác ABC. c) Xác định tọa độ điểm D sao cho ABCD là hình bình hành. + Giải các phương trình sau.