Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Củ Chi TP HCM

Nội dung Đề cuối học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Củ Chi TP HCM Bản PDF Bài kiểm tra cuối kỳ 1 môn Toán lớp 9 năm học 2022-2023 tại phòng GD&ĐT Củ Chi - TP HCM đã được Sytu giới thiệu đến quý thầy cô và các em học sinh. Đề thi bao gồm câu hỏi đa dạng từ các chủ đề của chương trình học, kèm theo đáp án chi tiết và hướng dẫn chấm điểm.

Trích dẫn một số câu hỏi từ Đề cuối kỳ 1 Toán lớp 9 năm 2022-2023 phòng GD&ĐT Củ Chi - TP HCM:

1. Bài toán về giảm giá: Cửa hàng A đã giảm giá 12% cho tất cả sản phẩm. Hỏi nếu bạn Hoa mua một cái laptop có giá niêm yết 16,000,000 đồng thì phải trả bao nhiêu tiền sau khi đã giảm giá?

2. Bài toán về hình học: Một con chim đậu trên đầu một cây trụ điện cao 8m, sau đó lao thẳng xuống bắt một con mồi. Hỏi góc tạo bởi đường bay của con chim với mặt đất là bao nhiêu độ và vận tốc trung bình của con chim theo m/s là bao nhiêu?

3. Bài toán về định lý cosin: Để nhìn thấy đỉnh A của một vách đá, người ta đã đứng tại điểm P cách vách đá 45m và nhìn lên một góc 25 độ so với đường nằm ngang. Hãy tính độ cao của vách đá.

Đề thi Toán lớp 9 năm 2022-2023 tại phòng GD&ĐT Củ Chi - TP HCM là cơ hội để học sinh thực hành và kiểm tra kiến thức mình đã học. Hy vọng rằng bài kiểm tra sẽ giúp các em củng cố kiến thức và chuẩn bị tốt cho kỳ thi cuối học kỳ 1.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Cao Bá Quát - Hà Nội
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội : + Cho (O;R), từ điểm S ở ngoài đường tròn (O;R) sao cho OS = 2R, kẻ hai tiếp tuyến SA, SB với đường tròn (A, B là tiếp điểm), gọi H là giao điểm của SO và AB. a) Chứng minh: SO ⊥ AB. b) Chứng minh: OH.OS = R2. c) Chứng minh: ∆SBA đều. d) Vẽ cát tuyến SMN của (O;R), xác định vị trí của cát tuyến SMN để SM + SN đạt giá trị nhỏ nhất. + Cho hàm số bậc nhất : y = (m – 2)x + 3 với m là tham số. a) Tìm m đề hàm số đồng biến. b) Vẽ đồ thị hàm số trên khi m = 3. c) Tính diện tích của tam giác giới hạn bởi đồ thị vừa vẽ ở câu b và hai trục tọa độ. + Cho hai biểu thức 4 x A x 2 và 2 2 B x 2 x 2 với x 0 x 4. a) Tính giá trị của biểu thức A khi x 16. b) Rút gọn biểu thức B. c) Tìm các giá trị nguyên của x để khi 1 B A 4.
Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Thăng Long - Hà Nội
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Thăng Long – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), kỳ thi được diễn ra vào thứ Sáu ngày 31 tháng 12 năm 2021.
Đề thi học kì 1 Toán 9 năm 2021 - 2022 trường THCS Trưng Vương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm 2021 – 2022 trường THCS Trưng Vương – Hà Nội.
Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 phòng GDĐT Đan Phượng - Hà Nội
Thứ Năm ngày 30 tháng 12 năm 2021, phòng Giáo dục và Đào tạo huyện Đan Phượng, thành phố Hà Nội tổ chức kỳ thi kiểm tra đánh giá chất lượng cuối học kì 1 môn Toán lớp 9 năm học 2021 – 2022. Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 phòng GD&ĐT Đan Phượng – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giáo viên coi thi phát đề). Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 phòng GD&ĐT Đan Phượng – Hà Nội : + Cho hàm số y = (m – 2)x + 2 – m (m là tham số) có đồ thị là đường thẳng (d). 1) Tìm m để hàm số đã cho là hàm số bậc nhất. 2) Vẽ đồ thị của hàm số tại m = 3. 3) Tìm m để (d) song song với đồ thị hàm số y = 2x + 3. + Cho nửa đường tròn (O) đường kính AB, tiếp tuyến Bx. Qua điểm C trên nửa đường tròn (C khác A và B) kẻ tiếp tuyến với nửa đường tròn cắt Bx tại M. Tia AC cắt Bx ở N. 1) Chứng minh bốn điểm O, B, M, C cùng thuộc một đường tròn. 2) Chứng minh OM vuông góc với BC. 3) Chứng minh M là trung điểm của đoạn thẳng BN. 4) Kẻ CH vuông góc với AB tại H, AM cắt CH ở I. Chứng minh I là trung điểm của đoạn thẳng CH. + Cho x, y, z là các số nguyên dương có tổng bằng 2020. Tìm giá trị lớn nhất của biểu thức M = xyz.