Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bồi dưỡng và phát triển tư duy đột phá Toán 8 (Tập 1 Đại số)

THCS. giới thiệu đến bạn đọc tài liệu “Bồi dưỡng và phát triển tư duy đột phá Toán 8 (Tập 1: Đại số)”, tài liệu gồm 138 trang được biên soạn với mục đích gửi tới quý thầy cô giáo, quý vị phụ huynh và các em học sinh một tài liệu tham khảo hữu ích trong quá trình dạy và học môn Toán lớp 8 – phần Đại số 8, theo định hướng đổi mới của Bộ Giáo dục và Đào tạo. Cấu trúc tài liệu gồm hai phần: + Kiến thức căn bản cần nắm: Nhắc lại những kiến thức cơ bản Đại số 8 cần nắm, những công thức quan trọng trong bài học, có ví dụ minh họa. + Bài tập sách giáo khoa & bài tập tham khảo: Lời giải chi tiết cho các bài tập, bài tập được tuyển chọn từ nhiều nguồn tài liệu Toán 8 – phần Đại số, được chia bài tập thành các dạng có phương pháp làm bài, các ví dụ minh họa có lời giải chi tiết, có nhiều cách giải khác nhau cho một bài toán. Mục lục tài liệu bồi dưỡng và phát triển tư duy đột phá Toán 8 (Tập 1: Đại số): CHƯƠNG I . PHÉP NHÂN, PHÉP CHIA CÁC ĐA THỨC. Bài 1 . Nhân đơn thức với đa thức. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 2 . Nhân đa thức với đa thức. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 3 . Những hằng đẳng thức đáng nhớ. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 4 . Những hằng đẳng thức đáng nhớ (tiếp theo). A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 5 . Những hằng đẳng thức đáng nhớ (tiếp theo). A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 6 . Chuyên đề phân tích đa thức thành nhân tử. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 7 . Chia đơn thức cho đơn thức. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 8 . Chia đa thức cho đơn thức. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 9 . Chia đa thức một biến đã sắp xếp. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. [ads] CHƯƠNG 2 . PHÂN THỨC ĐẠI SỐ. Bài 1 . Chuyên đề kiến thức mở đầu về phân thức đại số. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 2 . Chuyên đề cộng trừ nhân chia phân thức đại số. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. CHƯƠNG 3 . PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. Bài 1. Mở đầu về phương trình – phương trình bậc nhất môt ẩn. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 2 . Phương trình đưa về dạng ax+ b =0. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 3 . Phương tình tích. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 4. Phương trình chứa ẩn ở mẫu – bài tập tổng hợp. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 5. Giải bài toán bằng cách lập phương trình. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. CHƯƠNG 4 . BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. Bài 1 . Liên hệ giữa thứ tự và phép cộng, giữa thứ tự và phép nhân. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 2 . Bất phương trình bậc nhất một ẩn. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 3 . Phương trình chứa dấu giá trị tuyệt đối. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phép chia các phân thức đại số
Nội dung Chuyên đề phép chia các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép chia các phân thức đại số Chuyên đề phép chia các phân thức đại số Tài liệu này bao gồm 13 trang, tập trung vào việc giải thích cách chia các phân thức đại số. Nó tóm tắt những kiến thức cốt lõi mà bạn cần phải đạt được, cung cấp hướng dẫn cụ thể về cách giải các dạng toán khác nhau, và chứa một loạt các bài tập từ cơ bản đến nâng cao trong chuyên đề này. Trên cơ sở lý thuyết, chúng ta sử dụng các quy tắc chia phân thức để thực hiện phép tính. Ví dụ, chia A/B cho C/D tương đương với nhân A/B với nghịch đảo của C/D, với điều kiện C/D khác không. Luôn lưu ý tính toán từ trái sang phải khi có nhiều phân thức trong phép chia. Bài tập cũng tập trung vào việc tìm phân thức thỏa mãn đẳng thức cho trước. Để giải bài toán này, ta cần đưa phân thức cần tìm về riêng một vế và sử dụng quy tắc nhân và chia phân thức để suy ra kết quả cuối cùng. Các bài toán nâng cao trong tài liệu cũng đề cập đến các trường hợp phức tạp hơn, thách thức hơn đối với học sinh. Tuy nhiên, bằng cách tự tin áp dụng kiến thức đã học, bạn sẽ có thể giải quyết chúng một cách mạch lạc. Với đáp án và lời giải chi tiết, tài liệu này không chỉ là một công cụ học tập hữu ích mà còn là người bạn đồng hành đáng tin cậy trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số.
Chuyên đề phép nhân các phân thức đại số
Nội dung Chuyên đề phép nhân các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép nhân các phân thức đại số Chuyên đề phép nhân các phân thức đại số Tài liệu này bao gồm 11 trang, tập trung vào việc giải thích lý thuyết quan trọng cần hiểu, cung cấp các dạng toán và hướng dẫn cách giải, đồng thời chọn lọc bài tập từ dễ đến khó trong chuyên đề phép nhân các phân thức đại số. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh tiếp cận và hiểu rõ hơn về chương trình Đại số 8 chương 2: Phân thức đại số. I. Tóm tắt lý thuyết: Trong phần này, tóm tắt các lý thuyết quan trọng như quy tắc nhân phân thức để áp dụng vào việc giải các bài toán. II. Bài tập và các dạng toán: Dạng 1: Sử dụng quy tắc nhân để thực hiện phép tính, vận dụng quy tắc đã học vào bài toán cụ thể. Dạng 2: Tính toán bằng cách kết hợp các quy tắc đã học như quy tắc cộng, trừ và nhân. Có thể áp dụng quy tắc nhân đối với nhiều phân thức, ưu tiên tính toán biểu thức trong dấu ngoặc trước (nếu có). Tài liệu này được thiết kế để giúp học sinh hiểu và áp dụng phép nhân các phân thức đại số một cách linh hoạt và chính xác trong quá trình học tập.
Chuyên đề phép trừ các phân thức đại số
Nội dung Chuyên đề phép trừ các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép trừ các phân thức đại số Chuyên đề phép trừ các phân thức đại số Chuyên đề này bao gồm 21 trang tài liệu, tập trung vào việc truyền đạt lý thuyết cơ bản về phân dạng và cách giải các dạng toán liên quan đến phép trừ các phân thức đại số. Tài liệu cũng tuyển chọn các bài tập từ dễ đến khó, giúp học sinh nắm vững kiến thức và kỹ năng trong việc giải các bài toán thuộc chương trình Đại số 8, chương 2: Phân thức đại số. I. Tóm tắt lý thuyết: Phân thức đối. Quy tắc trừ hai phân thức đại số. II. Bài tập và các dạng toán: Dưới đây là một số dạng toán thường gặp: Dạng 1: Thực hiện phép tính trừ với các phân thức đại số. Áp dụng quy tắc trừ các phân thức đại số. Thực hiện phép cộng các phân thức đại số. Dạng 2: Tìm phân thức thỏa mãn yêu cầu. Đưa phân thức cần tìm về dạng riêng. Sử dụng quy tắc cộng, trừ phân thức để tìm ra đáp án. Dạng 3: Giải toán sử dụng phép trừ các phân thức đại số. Thiết lập biểu thức theo yêu cầu của đề bài. Sử dụng quy tắc cộng, trừ phân thức để giải toán. III. Phiếu bài tập tự luyện: Những dạng bài tập tự luyện sau sẽ giúp bạn rèn luyện kỹ năng thêm: Tìm phân thức đối của một phân thức. Trừ các phân thức cùng mẫu thức. Trừ các phân thức không cùng mẫu thức. Chứng minh đẳng thức. Biểu diễn đại lượng thông qua biến.
Chuyên đề phép cộng các phân thức đại số
Nội dung Chuyên đề phép cộng các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép cộng các phân thức đại số Chuyên đề phép cộng các phân thức đại số Tài liệu này bao gồm 14 trang chi tiết về cách thức cộng các phân thức đại số. Nội dung tập trung vào việc tóm tắt lý thuyết quan trọng, phân dạng và hướng dẫn giải các dạng toán liên quan đến phép cộng phân thức đại số. Bên cạnh đó, tài liệu cũng cung cấp một loạt các bài tập từ cơ bản đến nâng cao để học sinh thực hành, kèm theo đáp án và lời giải chi tiết. Phần tóm tắt lý thuyết trong tài liệu giải thích hai quy tắc quan trọng khi cộng các phân thức: cộng hai phân thức cùng mẫu thức và cộng hai phân thức khác mẫu thức. Bằng cách giải thích rõ ràng và dễ hiểu, học sinh có thể nắm vững cách thức thực hiện các phép tính này. Bên cạnh đó, tài liệu cũng trình bày các dạng toán phổ biến liên quan đến phép cộng phân thức. Từ việc cộng xác phân thức thông thường đến tính giá trị biểu thức tổng các phân thức đại số, học sinh sẽ được hướng dẫn cụ thể từng bước để giải quyết các loại bài tập này. Cuối cùng, tài liệu cũng cung cấp các bài tập giải toán đố thú vị để học sinh áp dụng kiến thức về phép cộng phân thức vào thực tế. Điều này giúp học sinh hiểu rõ hơn về ứng dụng của phân thức đại số trong các tình huống thực tế.