Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 2 năm 2022 2023 trường THCS Giảng Võ Hà Nội

Nội dung Đề thi thử Toán vào lần 2 năm 2022 2023 trường THCS Giảng Võ Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 trường THCS Giảng Võ Hà Nội Đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 trường THCS Giảng Võ Hà Nội Xin chào quý thầy, cô giáo và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng nhau tìm hiểu về đề thi thử môn Toán lớp 9 ôn tập thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 tại trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội. Đề thi sẽ diễn ra vào ngày 07 tháng 06 năm 2022, và chúng ta sẽ có cơ hội thực hành và kiểm tra kiến thức của mình qua đề thi và đáp án, lời giải chi tiết cũng như hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 trường THCS Giảng Võ Hà Nội: Giải bài toán khoảng cách giữa hai bến sông với việc sử dụng phương trình hay hệ phương trình. Tính diện tích giấy làm nhãn mác cho các hộp sữa theo kích thước cụ thể. Chứng minh các tính chất của tam giác và tứ giác trong hình vẽ cho trước. Với những câu hỏi và bài toán đa dạng như vậy, đề thi thử Toán sẽ giúp các em học sinh rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và nắm vững kiến thức căn bản của môn học. Hy vọng rằng mọi người sẽ học tập và ôn tập hiệu quả để chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 năm 2019 - 2020 môn Toán sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề tuyển sinh vào lớp 10 năm học 2019 – 2020 môn Toán sở GD&ĐT Nghệ An, đề thi được biên soạn theo dạng tự luận, với cấu trúc tương tự các năm học trước, đề thi gồm 5 bài toán, thời gian học sinh làm bài 120 phút. Trích dẫn đề thi chính thức tuyển sinh vào lớp 10 năm 2019 – 2020 môn Toán sở GD&ĐT Nghệ An : + Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C khác điểm M. Kẻ MH vuông góc với BC (H thuộc BC). a) Chứng minh BOMH là tứ giác nội tiếp. b) MB cắt OH tại E. Chứng minh ME.HM = BE.HC. c) Gọi giao điểm của đường tròn (O) và đường tròn ngoại tiếp tam giác MHC là K.Chứng minh ba điểm C, K, E thẳng hàng. + Tình cảm gia đình có sức mạnh thật phi thường. Bạn Vi Quyết Chiến – Cậu bé 13 tuổi quá thương nhớ em trai của mình đã vượt qua một quãng đường dài 180 km từ Sơn La đến bệnh viện nhi Trung ương Hà Nội để thăm em. Sau khi đi bằng xe đạp 7 giờ, bạn ấy được lên xe khách và đi tiếp 1 giờ 30 phút nữa thì đến nơi. Biết vận tốc của xe khách lớn hơn vận tốc của xe đạp là 35 km/giờ. Tính vận tốc xe đạp của bạn Chiến. + Xác định hàm số bậc nhất y = ax + b biết rằng đồ thị của hàm số đi qua hai điểm M(1;-1) và N(2;1).
Đề tuyển sinh lớp 10 chuyên năm 2019 - 2020 môn Toán sở GDĐT Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo cùng các bạn học sinh đề thi chính thức tuyển sinh vào lớp 10 chuyên năm học 2019 – 2020 môn Toán sở GD&ĐT Gia Lai, đề thi được dành cho các bạn học sinh đăng ký học các lớp không chuyên tại các trường THPT chuyên trực thuộc sở Giáo dục và Đào tạo tỉnh Gia Lai. Đề tuyển sinh lớp 10 chuyên năm 2019 – 2020 môn Toán sở GD&ĐT Gia Lai gồm 1 trang với 5 bài toán dạng tự luận, thời gian học sinh làm bài là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên năm 2019 – 2020 môn Toán sở GD&ĐT Gia Lai : + Cho phương trình x^2 + 2(m – 2)x + m^2 – 3m – 1 = 0, với m là tham số. a) Giải phương trình đã cho khi m = 1. b) Xác định giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1, x2 sao cho x1^2 – x1x2 + x2^2 = 9. + Quãng đường AB dài 180 km. Cùng một lúc, hai ô tô khởi hành từ A đến B. Mỗi giờ ô tô thứ nhất chạy nhiều hơn ô tô thứ hai 10 km nên ô tô thứ nhất đến B trước ô tô thứ hai 36 phút. Tính vận tốc trung bình của mỗi ô tô. + Cho đường tròn (O) và điểm A nằm ngoài (O). Đường thẳng AC cắt đường tròn (O) tại hai điểm B và C (AB < AC). Qua A vẽ một đường thẳng không đi qua điểm O, cắt đường tròn (O) tại hai điểm D và E (AD < AE). Đường thẳng vuông góc với AC tại A cắt đường thẳng CE tại F. a) Chứng minh tứ giác ABEF nội tiếp đường tròn. b) Gọi M là giao điểm của đường thẳng FB và đường tròn (O) (M không trùng B). Chứng minh AC là đường trung trực của đoạn thẳng DM. c) Chứng minh CE.CF + AD.AE = AC^2.
Đề tuyển sinh lớp 10 năm 2019 - 2020 môn Toán sở GDĐT Quảng Ngãi
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề tuyển sinh lớp 10 năm 2019 – 2020 môn Toán sở GD&ĐT Quảng Ngãi, đề thi gồm 1 trang với 5 bài toán dạng tự luận, thời gian học sinh làm bài 90 phút, kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2019, đề thi có hướng dẫn làm bài. Trích dẫn đề tuyển sinh lớp 10 năm 2019 – 2020 môn Toán sở GD&ĐT Quảng Ngãi : + Một đội công nhân đặt kế hoạch sản xuất 250 sản phẩm. Trong 4 ngày đầu, họ thực hiện đúng kế hoạch. Mỗi ngày sau đó, họ đều vượt mức 5 sản phẩm nên đã hoàn thành công việc sớm hơn 1 ngày so với dự định. Hỏi theo kế hoạch, mỗi ngày đội công nhân đó làm được bao nhiêu sản phẩm? Biết rằng năng suất làm việc của mỗi công nhân là như nhau. + Cho tam giác nhọn ABC (AB < AC), đường cao AH, nội tiếp đường tròn (O). Gọi D và E thứ tự là hình chiếu vuông góc của H lên AB và AC. a) Chứng minh các tứ giác AEHD và BDEC nội tiếp được đường tròn. b) Vẽ đường kính AF của đường tròn (O). Chứng minh BC = √(AB.BD) + √(AC.CE) và AF vuông góc với DE. c) Gọi O’ là tâm đường tròn ngoại tiếp tam giác BDE. Chứng minh O’ là trung điểm của HF. d) Tính bán kính đường trò (O’) biết BC = 8cm, DE = 6cm, AF = 10cm. + Cho hình vuông ABCD. Gọi S1 là diện tích phần giao của hai nửa đường tròn đường kính AB và AD. S2 là diện tích phần còn lại của hình vuông nằm ngoài hai nửa đường trong nói trên (như hình vẽ bên).Tính S1/S2.
Đề tuyển sinh vào 10 môn Toán chuyên năm 2019 - 2020 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm học 2019 – 2020 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 08 tháng 06 năm 2019; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.