Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 - 2021)

Tài liệu gồm 880 trang, được tổng hợp bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp và phân loại theo chuyên đề các dạng toán trong các đề thi tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2020 – 2021, có đáp án và lời giải chi tiết; tài liệu giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. D09 – 1.9 Chứng minh bất đẳng thức (dùng nhiều phương pháp) – Mức độ 3. D02 – 5.2 Giải bất phương trình bậc hai và bài toán liên quan – Mức độ 4. D01 – 1.1 Quy tắc cộng – Mức độ 1. D01 – 2.1 Bài toán chỉ sử dụng hoán vị – Mức độ 1. D01 – 2.1 Bài toán chỉ sử dụng hoán vị – Mức độ 2. D02 – 2.2 Bài toán chỉ sử dụng chỉnh hợp – Mức độ 1. D02 – 2.2 Bài toán chỉ sử dụng chỉnh hợp – Mức độ 2. D03 – 2.3 Bài toán chỉ sử dụng tổ hợp – Mức độ 1. D02 – 3.2 Tìm hệ số, số hạng trong khai triển nhị thức Newton – Mức độ 2. D02 – 3.2 Tìm hệ số, số hạng trong khai triển nhị thức Newton – Mức độ 3. D02 – 5.2 Tính xác suất bằng định nghĩa – Mức độ 2. D02 – 5.2 Tính xác suất bằng định nghĩa – Mức độ 3. D02 – 5.2 Tính xác suất bằng định nghĩa – Mức độ 4. D03 – 5.3 Tính xác suất bằng công thức cộng – Mức độ 3. D04 – 5.4 Tính xác suất bằng công thức nhân – Mức độ 2. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 1. D03 – 3.3 Tìm hạng tử trong cấp số cộng – Mức độ 1. D00 – 4.0 Các câu hỏi chưa phân dạng – Mức độ 1. D03 – 4.3 Tìm hạng tử trong cấp số nhân – Mức độ 1. D02 – 1.2 Dãy số có giới hạn 0 – Mức độ 1. D03 – 1.3 Giới hạn của dãy phân thức hữu tỷ – Mức độ 1. D07 – 2.7 Dạng vô cùng chia vô cùng – Mức độ 1. D01 – 1.1 Câu hỏi lý thuyết về tính đơn điệu – Mức độ 1. D02 – 1.2 Xét tính đơn điệu của hàm số cho bởi công thức – Mức độ 1. D02 – 1.2 Xét tính đơn điệu của hàm số cho bởi công thức – Mức độ 2. D03 – 1.3 Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị – Mức độ 1. D03 – 1.3 Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị – Mức độ 2. D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 2. D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 3. D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 4. D05 – 1.5 Tìm khoảng đơn điệu của hàm số h(x) = f(x) + g(x) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 4. D06 – 1.6 Tìm tham số m để hàm số đơn điệu trên R, trên từng khoảng xác định – Mức độ 3. D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 2. D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 3. D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 4. D08 – 1.8 Ứng dụng tính đơn điệu vào PT, BPT, HPT, BĐT – Mức độ 3. D08 – 1.8 Ứng dụng tính đơn điệu vào PT, BPT, HPT, BĐT – Mức độ 4. D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 1. D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 2. D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 3. D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 1. D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 2. D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 4. D04 – 2.4 Cực trị của hs chứa dấu GTTĐ, hs cho bởi nhiều công thức – Mức độ 3. D04 – 2.4 Cực trị của hs chứa dấu GTTĐ, hs cho bởi nhiều công thức – Mức độ 4. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 1. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 2. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 3. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 4. D06 – 2.6 Tìm cực trị của hàm số h(x) = f(x) + g(x) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 4. D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 2. D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 3. D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 4. D09 – 2.9 Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện – Mức độ 3. D09 – 2.9 Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện – Mức độ 4. D10 – 2.10 Tìm m để hs trùng phương có 1 hoặc 3 cực trị – Mức độ 3. D11 – 2.11 Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn ĐK – Mức độ 3. D14 – 2.14 Tìm m để hs chứa dấu GTTĐ có cực trị thỏa mãn đk cho trước – Mức độ 3. D14 – 2.14 Tìm m để hs chứa dấu GTTĐ có cực trị thỏa mãn đk cho trước – Mức độ 4. D15 – 2.15 Tìm m để hs khác có cực trị thỏa mãn đk cho trước – Mức độ 4. D16 – 2.16 Bài toán liên quan đến đường thẳng đi qua hai điểm cực trị của hs bậc 3 và hs bậc 2 trên bậc 1 – Mức độ 3. D02 – 3.2 GTLN, GTNN trên đoạn [a;b] – Mức độ 1. D02 – 3.2 GTLN, GTNN trên đoạn [a;b] – Mức độ 2. D03 – 3.3 GTLN, GTNN trên khoảng – Mức độ 2. D04 – 3.4 GTLN, GTNN của hàm số biết BBT, đồ thị – Mức độ 1. D04 – 3.4 GTLN, GTNN của hàm số biết BBT, đồ thị – Mức độ 3. D07 – 3.7 Ứng dụng GTNN, GTLN trong bài toán phương trình, bất phương trình, hệ phương trình – Mức độ 3. D08 – 3.8 GTLN, GTNN của hs liên quan đến đồ thị, tích phân – Mức độ 4. D09 – 3.9 Tìm m để hs có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 3. D09 – 3.9 Tìm m để hs có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 4. D11 – 3.11 Tìm m để hs chứa dấu GTTĐ có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 3. D11 – 3.11 Tìm m để hs chứa dấu GTTĐ có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 4. D12 – 3.12 GTLN, GTNN hàm nhiều biến – Mức độ 4. D13 – 3.13 Bài toán ứng dụng, tối ưu, thực tế – Mức độ 3. D01 – 4.1 Câu hỏi lý thuyết về tiệm cận – Mức độ 1. D02 – 4.2 Tìm đường tiệm cận, số đường tiệm cận của hs b1 Trên b1 – Mức độ 1. D02 – 4.2 Tìm đường tiệm cận, số đường tiệm cận của hs b1 Trên b1 – Mức độ 2. D03 – 4.3 Tìm đường tiệm cận, số đường tiệm cận của hs phân thức hữu tỷ – Mức độ 2. D03 – 4.3 Tìm đường tiệm cận, số đường tiệm cận của hs phân thức hữu tỷ – Mức độ 3. D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hs chứa căn – Mức độ 1. D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hs chứa căn – Mức độ 2. D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hs chứa căn – Mức độ 3. D05 – 4.5 Tìm đường tiệm cận, số đường tiệm cận của đồ thị hs biết BBT, đồ thị – Mức độ 2. D06 – 4.6 Bài toán liên quan đến đường tiệm cận – Mức độ 3. D06 – 4.6 Bài toán liên quan đến đường tiệm cận – Mức độ 4. D00 – 5.0 Các câu hỏi chưa phân dạng – Mức độ 3. D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 1. D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 2. D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 3. D03 – 5.3 Các phép biến đổi đồ thị – Mức độ 3. D04 – 5.4 Tìm tọa độ giao điểm, số giao điểm của hai đồ thị không chứa tham số – Mức độ 1. D04 – 5.4 Tìm tọa độ giao điểm, số giao điểm của hai đồ thị không chứa tham số – Mức độ 2. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 1. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 2. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 3. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 4. D06 – 5.6 Tìm m để phương trình có nghiệm, có k nghiệm khi biết đồ thị BBT – Mức độ 1. D06 – 5.6 Tìm m để phương trình có nghiệm, có k nghiệm khi biết đồ thị BBT – Mức độ 4. D07 – 5.7 Tìm m để PT có nghiệm bằng PP cô lập m – Mức độ 3. D09 – 5.9 Tìm m liên quan đến tương giao của hs bậc 3 – Mức độ 3. D09 – 5.9 Tìm m liên quan đến tương giao của hs bậc 3 – Mức độ 4. D11 – 5.11 Tìm m liên quan đến tương giao của hs trùng phương – Mức độ 4. D12 – 5.12 Tìm m liên quan đến tương giao của hs khác – Mức độ 4. D18 – 5.18 Bài toán tiếp tuyến của đồ thị – Mức độ 3. D18 – 5.18 Bài toán tiếp tuyến của đồ thị – Mức độ 4. D01 – 1.1 Tính giá trị của biểu thức chứa lũy thừa – Mức độ 2. D02 – 1.2 Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa – Mức độ 1. D02 – 1.2 Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa – Mức độ 2. D02 – 2.2 Đạo hàm hàm số lũy thừa – Mức độ 1. D01 – 3.1 Tính giá trị biểu thức chứa lô-ga-rít – Mức độ 1. D01 – 3.1 Tính giá trị biểu thức chứa lô-ga-rít – Mức độ 2. D01 – 3.1 Tính giá trị biểu thức chứa lô-ga-rít – Mức độ 3. D02 – 3.2 Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít – Mức độ 1. D02 – 3.2 Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít – Mức độ 2. D02 – 3.2 Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít – Mức độ 3. D03 – 3.3 So sánh các biểu thức lô-ga-rít – Mức độ 1. D03 – 3.3 So sánh các biểu thức lô-ga-rít – Mức độ 2. D00 – 4.0 Các câu hỏi chưa phân dạng – Mức độ 3. D00 – 4.0 Các câu hỏi chưa phân dạng – Mức độ 4. D01 – 4.1 Tập xác định của hàm số mũ, hàm số lô-ga-rít – Mức độ 1. D01 – 4.1 Tập xác định của hàm số mũ, hàm số lô-ga-rít – Mức độ 2. D01 – 4.1 Tập xác định của hàm số mũ, hàm số lô-ga-rít – Mức độ 3. D02 – 4.2 Tính đạo hàm hàm số mũ, hàm số lô-ga-rít – Mức độ 1. D02 – 4.2 Tính đạo hàm hàm số mũ, hàm số lô-ga-rít – Mức độ 2. D04 – 4.4 Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít – Mức độ 3. D04 – 4.4 Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít – Mức độ 4. D06 – 4.6 Đồ thị hàm số mũ, Logarit – Mức độ 2. D07 – 4.7 Lý thuyết tổng hợp hàm số lũy thừa, mũ, lô-ga-rít – Mức độ 1. D08 – 4.8 Bài toán lãi suất – Mức độ 2. D08 – 4.8 Bài toán lãi suất – Mức độ 3. D09 – 4.9 Bài toán tăng trưởng – Mức độ 2. D09 – 4.9 Bài toán tăng trưởng – Mức độ 3. D01 – 5.1 Phương trình mũ cơ bản – Mức độ 1. D02 – 5.2 Phương pháp đưa về cùng cơ số GPT Mũ – Mức độ 1. D02 – 5.2 Phương pháp đưa về cùng cơ số GPT Mũ – Mức độ 2. D03 – 5.3 Phương pháp đặt ẩn phụ GPT Mũ – Mức độ 1. D03 – 5.3 Phương pháp đặt ẩn phụ GPT Mũ – Mức độ 2. D03 – 5.3 Phương pháp đặt ẩn phụ GPT Mũ – Mức độ 3. D05 – 5.5 Phương pháp hàm số, đánh giá GPT mũ – Mức độ 3. D05 – 5.5 Phương pháp hàm số, đánh giá GPT mũ – Mức độ 4. D06 – 5.6 Phương trình Logarit cơ bản – Mức độ 1. D06 – 5.6 Phương trình Logarit cơ bản – Mức độ 2. D07 – 5.7 Phương pháp đưa về cùng cơ số GPT Logarit – Mức độ 2. D07 – 5.7 Phương pháp đưa về cùng cơ số GPT Logarit – Mức độ 3. D07 – 5.7 Phương pháp đưa về cùng cơ số GPT Logarit – Mức độ 4. D08 – 5.8 Phương pháp đặt ẩn phụ GPT Logarit – Mức độ 3. D08 – 5.8 Phương pháp đặt ẩn phụ GPT Logarit – Mức độ 4. D10 – 5.10 Phương pháp hàm số, đánh giá GPT Logarit – Mức độ 3. D10 – 5.10 Phương pháp hàm số, đánh giá GPT Logarit – Mức độ 4. D00 – 6.0 Các câu hỏi chưa phân dạng – Mức độ 3. D00 – 6.0 Các câu hỏi chưa phân dạng – Mức độ 4. D01 – 6.1 Bất phương trình Mũ cơ bản – Mức độ 1. D02 – 6.2 Phương pháp đưa về cùng cơ số GBPT Mũ – Mức độ 2. D02 – 6.2 Phương pháp đưa về cùng cơ số GBPT Mũ – Mức độ 3. D03 – 6.3 Phương pháp đặt ẩn phụ GBPT Mũ – Mức độ 2. D03 – 6.3 Phương pháp đặt ẩn phụ GBPT Mũ – Mức độ 4. D06 – 6.6 Bất phương trình Logarit cơ bản – Mức độ 1. D06 – 6.6 Bất phương trình Logarit cơ bản – Mức độ 2. D07 – 6.7 Phương pháp đưa về cùng cơ số GBPT Logarit – Mức độ 2. D08 – 6.8 Phương pháp đặt ẩn phụ GBPT Logarit – Mức độ 2. D08 – 6.8 Phương pháp đặt ẩn phụ GBPT Logarit – Mức độ 3. D10 – 6.10 Phương pháp hàm số, đánh giá GBPT Logarit – Mức độ 3. D10 – 6.10 Phương pháp hàm số, đánh giá GBPT Logarit – Mức độ 4. D01 – 1.1 Định nghĩa, tính chất của nguyên hàm – Mức độ 1. D02 – 1.2 Nguyên hàm của hs cơ bản – Mức độ 1. D02 – 1.2 Nguyên hàm của hs cơ bản – Mức độ 2. D03 – 1.3 Nguyên hàm của hs phân thức hữu tỷ – Mức độ 1. D03 – 1.3 Nguyên hàm của hs phân thức hữu tỷ – Mức độ 2. D04 – 1.4 Tìm nguyên hàm thỏa mãn ĐK cho trước – Mức độ 2. D04 – 1.4 Tìm nguyên hàm thỏa mãn ĐK cho trước – Mức độ 3. D05 – 1.5 PP đổi biến số t = u(x) – Mức độ 2. D05 – 1.5 PP đổi biến số t = u(x) – Mức độ 3. D07 – 1.7 PP nguyên hàm từng phần – Mức độ 2. D07 – 1.7 PP nguyên hàm từng phần – Mức độ 3. D08 – 1.8 Nguyên hàm kết hợp đổi biến và từng phần – Mức độ 3. D09 – 1.9 Nguyên hàm của hàm ẩn – Mức độ 3. D10 – 1.10 Nguyên hàm của hs cho bởi nhiều công thức – Mức độ 3. D00 – 2.0 Các câu hỏi chưa phân dạng – Mức độ 3. D01 – 2.1 Định nghĩa, tính chất của tích phân – Mức độ 1. D01 – 2.1 Định nghĩa, tính chất của tích phân – Mức độ 2. D02 – 2.2 Tích phân cơ bản – Mức độ 1. D02 – 2.2 Tích phân cơ bản – Mức độ 2. D02 – 2.2 Tích phân cơ bản – Mức độ 3. D04 – 2.4 PP đổi biến t = u(x) – Mức độ 2. D04 – 2.4 PP đổi biến t = u(x) – Mức độ 3. D04 – 2.4 PP đổi biến t = u(x) – Mức độ 4. D06 – 2.6 Phương pháp tích phân từng phần – Mức độ 2. D06 – 2.6 Phương pháp tích phân từng phần – Mức độ 3. D07 – 2.7 Kết hợp đổi biến và từng phần tính tích phân – Mức độ 3. D08 – 2.8 Tích phân của hàm ẩn. Tích phân đặc biệt – Mức độ 2. D08 – 2.8 Tích phân của hàm ẩn. Tích phân đặc biệt – Mức độ 3. D08 – 2.8 Tích phân của hàm ẩn. Tích phân đặc biệt – Mức độ 4. D09 – 2.9 Tích phân bằng PP Vi Phân – Mức độ 4. D10 – 2.10 10 Tích phân hàm số hữu tỷ – Mức độ 2. D10 – 2.10 10 Tích phân hàm số hữu tỷ – Mức độ 3. D01 – 3.1 Câu hỏi lý thuyết – Mức độ 1. D01 – 3.1 Câu hỏi lý thuyết – Mức độ 2. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 1. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 2. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 3. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 4. D03 – 3.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) – Mức độ 1. D03 – 3.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) – Mức độ 2. D03 – 3.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) – Mức độ 3. D04 – 3.4 Thể tích tính theo mặt cắt S(x) – Mức độ 2. D06 – 3.6 Bài toán thực tế sử dụng diện tích hình phẳng – Mức độ 3. D06 – 3.6 Bài toán thực tế sử dụng diện tích hình phẳng – Mức độ 4. D08 – 3.8 Ứng dụng vào bài toán chuyển động – Mức độ 2. D08 – 3.8 Ứng dụng vào bài toán chuyển động – Mức độ 3. D08 – 3.8 Ứng dụng vào bài toán chuyển động – Mức độ 4. D10 – 3.10 Ứng dụng tích phân vào bài toán đại số – Mức độ 3. D10 – 3.10 Ứng dụng tích phân vào bài toán đại số – Mức độ 4. D01 – 1.1 Câu hỏi lý thuyết về số phức – Mức độ 1. D01 – 1.1 Câu hỏi lý thuyết về số phức – Mức độ 2. D02 – 1.2 Xác định phần thực, phần ảo, mô đun, liên hợp của số phức – Mức độ 1. D02 – 1.2 Xác định phần thực, phần ảo, mô đun, liên hợp của số phức – Mức độ 2. D03 – 1.3 Biểu diễn hình học cơ bản của số phức – Mức độ 1. D02 – 2.2 Thực hiện các phép toán về số phức. – Mức độ 1. D02 – 2.2 Thực hiện các phép toán về số phức. – Mức độ 2. D03 – 2.3 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp,…) qua các phép toán – Mức độ 1. D03 – 2.3 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp,…) qua các phép toán – Mức độ 2. D03 – 2.3 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp,…) qua các phép toán – Mức độ 4. D04 – 2.4 Tìm số phức thỏa mãn đk cho trước – Mức độ 2. D04 – 2.4 Tìm số phức thỏa mãn đk cho trước – Mức độ 3. D04 – 2.4 Tìm số phức thỏa mãn đk cho trước – Mức độ 4. D01 – 3.1 Biểu diễn số phức qua các phép toán – Mức độ 1. D01 – 3.1 Biểu diễn số phức qua các phép toán – Mức độ 2. D02 – 3.2 Tập hợp điểm biểu diễn của số phức – Mức độ 1. D02 – 3.2 Tập hợp điểm biểu diễn của số phức – Mức độ 2. D02 – 3.2 Tập hợp điểm biểu diễn của số phức – Mức độ 3. D03 – 3.3 Tìm bán kính của đường tròn biểu diễn số phức – Mức độ 2. D03 – 3.3 Tìm bán kính của đường tròn biểu diễn số phức – Mức độ 3. D02 – 4.2 Giải phương trình bậc 2 với hệ số thực. Tính toán biểu thức nghiệm – Mức độ 1. D02 – 4.2 Giải phương trình bậc 2 với hệ số thực. Tính toán biểu thức nghiệm – Mức độ 2. D03 – 4.3 Định lí Viet và ứng dụng – Mức độ 1. D03 – 4.3 Định lí Viet và ứng dụng – Mức độ 2. D04 – 4.4 Phương trình quy về bậc hai – Mức độ 2. D05 – 4.5 Các bài toán biểu diễn hình học nghiệm của phương trình – Mức độ 1. D05 – 4.5 Các bài toán biểu diễn hình học nghiệm của phương trình – Mức độ 2. D06 – 4.6 Các bài toán khác về phương trình – Mức độ 3. D02 – 5.2 Phương pháp hình học – Mức độ 4. D03 – 5.3 Phương pháp đại số – Mức độ 3. D03 – 5.3 Phương pháp đại số – Mức độ 4. D03 – 2.3 Xác định góc giữa hai đường thẳng (dùng định nghĩa) – Mức độ 2. D03 – 3.3 Xác định góc giữa mặt phẳng và đường thẳng, hình chiếu – Mức độ 2. D03 – 4.3 Xác định góc giữa hai mặt phẳng – Mức độ 2. D03 – 4.3 Xác định góc giữa hai mặt phẳng – Mức độ 3. D03 – 4.3 Xác định góc giữa hai mặt phẳng – Mức độ 4. D02 – 5.2 Khoảng cách từ một điểm đến một đường thẳng – Mức độ 2. D03 – 5.3 Khoảng cách từ một điểm đến một mặt phẳng – Mức độ 2. D03 – 5.3 Khoảng cách từ một điểm đến một mặt phẳng – Mức độ 3. D04 – 5.4 Khoảng cách giữa hai đường thẳng chéo nhau – Mức độ 2. D04 – 5.4 Khoảng cách giữa hai đường thẳng chéo nhau – Mức độ 3. D01 – 1.1 Nhận diện hình đa diện, khối đa diện – Mức độ 1. D02 – 1.2 Xác định số đỉnh, cạnh, mặt bên của một khối đa diện – Mức độ 1. D02 – 1.2 Xác định số đỉnh, cạnh, mặt bên của một khối đa diện – Mức độ 2. D03 – 1.3 Phân chia, lắp ghép các khối đa diện – Mức độ 2. D05 – 1.5 Phép biến hình trong không gian – Mức độ 1. D03 – 2.3 Tính chất đối xứng – Mức độ 2. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 1. D01 – 3.1 Diện tích xung quanh, diện tích toàn phần của khối đa diện – Mức độ 2. D02 – 3.2 Tính thể tích các khối chóp có cạnh bên vuông góc đáy – Mức độ 2. D02 – 3.2 Tính thể tích các khối chóp có cạnh bên vuông góc đáy – Mức độ 3. D03 – 3.3 Thể tích khối chóp có mặt bên vuông góc đáy – Mức độ 2. D04 – 3.4 Thể tích khối chóp đều – Mức độ 2. D04 – 3.4 Thể tích khối chóp đều – Mức độ 3. D04 – 3.4 Thể tích khối chóp đều – Mức độ 4. D05 – 3.5 Thể tích khối chóp khác – Mức độ 1. D05 – 3.5 Thể tích khối chóp khác – Mức độ 2. D05 – 3.5 Thể tích khối chóp khác – Mức độ 4. D06 – 3.6 Tỉ số thể tích khối chóp – Mức độ 1. D06 – 3.6 Tỉ số thể tích khối chóp – Mức độ 3. D07 – 3.7 Thể tích khối lăng trụ đứng – Mức độ 1. D07 – 3.7 Thể tích khối lăng trụ đứng – Mức độ 2. D07 – 3.7 Thể tích khối lăng trụ đứng – Mức độ 3. D08 – 3.8 Thể tích khối lăng trụ đều – Mức độ 1. D08 – 3.8 Thể tích khối lăng trụ đều – Mức độ 2. D09 – 3.9 Thể tích khối lăng trụ xiên – Mức độ 1. D09 – 3.9 Thể tích khối lăng trụ xiên – Mức độ 4. D11 – 3.11 Thể tích khối đa diện – Mức độ 1. D11 – 3.11 Thể tích khối đa diện – Mức độ 3. D11 – 3.11 Thể tích khối đa diện – Mức độ 4. D12 – 3.12 Các bài toán khác (góc, khoảng cách,…) liên quan đến thể tích khối đa diện – Mức độ 3. D13 – 3.13 Bài toán cực trị – Mức độ 4. D14 – 3.14 Bài toán thực tế về khối đa diện – Mức độ 2. D14 – 3.14 Bài toán thực tế về khối đa diện – Mức độ 3. D14 – 3.14 Bài toán thực tế về khối đa diện – Mức độ 4. D01 – 1.1 Câu hỏi lý thuyết về khối nón – Mức độ 1. D02 – 1.2 Diện tích xung quanh, diện tích toàn phần, Thể tích khối nón khi biết các dữ kiện cơ bản – Mức độ 1. D02 – 1.2 Diện tích xung quanh, diện tích toàn phần, Thể tích khối nón khi biết các dữ kiện cơ bản – Mức độ 2. D02 – 1.2 Diện tích xung quanh, diện tích toàn phần, Thể tích khối nón khi biết các dữ kiện cơ bản – Mức độ 3. D03 – 1.3 Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối nón – Mức độ 2. D04 – 1.4 Khối nón nội tiếp, ngoại tiếp khối đa diện – Mức độ 2. D07 – 1.7 Câu hỏi lý thuyết về khối trụ – Mức độ 1. D08 – 1.8 Diện tích xung quanh, diện tích toàn phần, Thể tích khối trụ khi biết các dữ kiện cơ bản – Mức độ 1. D08 – 1.8 Diện tích xung quanh, diện tích toàn phần, Thể tích khối trụ khi biết các dữ kiện cơ bản – Mức độ 2. D08 – 1.8 Diện tích xung quanh, diện tích toàn phần, Thể tích khối trụ khi biết các dữ kiện cơ bản – Mức độ 3. D09 – 1.9 Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối trụ – Mức độ 1. D09 – 1.9 Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối trụ – Mức độ 4. D10 – 1.10 Khối trụ nội tiếp, ngoại tiếp khối đa diện – Mức độ 2. D12 – 1.12 Bài toán thực tế về khối trụ – Mức độ 1. D12 – 1.12 Bài toán thực tế về khối trụ – Mức độ 2. D12 – 1.12 Bài toán thực tế về khối trụ – Mức độ 3. D13 – 1.13 Bài toán phối hợp giữa khối nón và khối trụ – Mức độ 3. D15 – 1.15 Khối tròn xoay nội tiếp, ngoại tiếp khối đa diện – Mức độ 2. D01 – 2.1 Câu hỏi lý thuyết – Mức độ 1. D03 – 2.3 Tính diện tích mặt cầu, thể tích khối cầu khi biết bán kính – Mức độ 1. D04 – 2.4 Khối cầu ngoại tiếp khối đa diện – Mức độ 2. D04 – 2.4 Khối cầu ngoại tiếp khối đa diện – Mức độ 3. D06 – 2.6 Bài toán tổng hợp về khối nón, khối trụ, khối cầu – Mức độ 3. D07 – 2.7 Bài toán cực trị về khối cầu – Mức độ 4. D01 – 1.1 Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz – Mức độ 1. D01 – 1.1 Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz – Mức độ 2. D02 – 1.2 Tích vô hướng và ứng dụng – Mức độ 1. D02 – 1.2 Tích vô hướng và ứng dụng – Mức độ 2. D04 – 1.4 Xác định tâm, bán kính của mặt cầu – Mức độ 1. D04 – 1.4 Xác định tâm, bán kính của mặt cầu – Mức độ 4. D05 – 1.5 Vị trí tương đối của hai mặt cầu, điểm với mặt cầu – Mức độ 3. D05 – 1.5 Vị trí tương đối của hai mặt cầu, điểm với mặt cầu – Mức độ 4. D06 – 1.6 Viết phương trình mặt cầu – Mức độ 1. D06 – 1.6 Viết phương trình mặt cầu – Mức độ 2. D06 – 1.6 Viết phương trình mặt cầu – Mức độ 3. D07 – 1.7 Các bài toán cực trị – Mức độ 4. D00 – 2.0 Các câu hỏi chưa phân dạng – Mức độ 2. D00 – 2.0 Các câu hỏi chưa phân dạng – Mức độ 4. D01 – 2.1 Xác định VTPT – Mức độ 1. D02 – 2.2 Viết phương trình mặt phẳng dùng đường thẳng – Mức độ 1. D02 – 2.2 Viết phương trình mặt phẳng dùng đường thẳng – Mức độ 2. D02 – 2.2 Viết phương trình mặt phẳng dùng đường thẳng – Mức độ 3. D03 – 2.3 Vị trí tương đối giữa hai mặt phẳng – Mức độ 2. D03 – 2.3 Vị trí tương đối giữa hai mặt phẳng – Mức độ 3. D04 – 2.4 Tìm tọa độ điểm liên quan đến mặt phẳng – Mức độ 1. D05 – 2.5 Góc giữa hai mặt phẳng – Mức độ 3. D06 – 2.6 Khoảng cách từ điểm đến mặt phẳng và bài toán liên quan – Mức độ 2. D07 – 2.7 Vị trí tương đối giữa mặt cầu và mặt phẳng – Mức độ 2. D07 – 2.7 Vị trí tương đối giữa mặt cầu và mặt phẳng – Mức độ 3. D09 – 2.9 Các bài toán cực trị – Mức độ 3. D09 – 2.9 Các bài toán cực trị – Mức độ 4. D10 – 2.10 Điểm thuộc mặt phẳng – Mức độ 1. D11 – 2.11 PTMP không dùng đt – Mức độ 1. D11 – 2.11 PTMP không dùng đt – Mức độ 2. D12 – 2.12 PTMP theo đoạn chắn – Mức độ 1. D13 – 2.13 Hình chiếu của điểm lên mặt phẳng và bài toán liên quan – Mức độ 1. D13 – 2.13 Hình chiếu của điểm lên mặt phẳng và bài toán liên quan – Mức độ 2. D13 – 2.13 Hình chiếu của điểm lên mặt phẳng và bài toán liên quan – Mức độ 3. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 2. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 3. D01 – 3.1 Xác định VTCP của đường thẳng – Mức độ 1. D01 – 3.1 Xác định VTCP của đường thẳng – Mức độ 2. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 1. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 2. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 3. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 4. D03 – 3.3 Tìm tọa độ điểm liên quan đến đường thẳng – Mức độ 1. D03 – 3.3 Tìm tọa độ điểm liên quan đến đường thẳng – Mức độ 2. D03 – 3.3 Tìm tọa độ điểm liên quan đến đường thẳng – Mức độ 3. D07 – 3.7 Vị trí tương đối giữa đường thẳng và mặt phẳng – Mức độ 2. D08 – 3.8 Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu – Mức độ 2. D08 – 3.8 Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu – Mức độ 3. D08 – 3.8 Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu – Mức độ 4. D09 – 3.9 Các bài toán cực trị – Mức độ 3. D10 – 3.10 Điểm thuộc đường thẳng – Mức độ 1. D11 – 3.11 Phương trình đường thẳng liên quan đến góc và khoảng cách – Mức độ 3. D01 – 4.1 Bài toán HHKG – Mức độ 3. D01 – 4.1 Bài toán HHKG – Mức độ 4.

Nguồn: toanmath.com

Đọc Sách

Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2
Tài liệu gồm 213 trang được sưu tầm và biên soạn bởi thầy giáo Ths. Nguyễn Chín Em, phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2. Với mỗi câu hỏi và bài toán trong đề thi, tài liệu bổ sung thêm nhiều câu hỏi và bài toán tương tự, có đáp án và lời giải chi tiết. 50 dạng toán phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2: + Dạng toán 1. Hoán vị – Chỉnh hợp – Tổ hợp. + Dạng toán 2. Cấp số cộng. + Dạng toán 3. Phương trình Mũ – Logarits (phương trình mũ). + Dạng toán 4. Thể tích khối đa diện (Khối lập phương). + Dạng toán 5. Hàm số Mũ – Hàm số Logarits (hàm số Logarits). + Dạng toán 6. Nguyên hàm – Tích phân(Nguyên hàm). + Dạng toán 7. Thể tích khối đa diện (Khối chóp). + Dạng toán 8. Khối Nón – Trụ – Cầu (Công thức thể tích khối Nón). + Dạng toán 9. Khối Nón – Trụ – Cầu (Diện tích mặt cầu). + Dạng toán 10. Tính đơn điệu hàm số (Tìm khoảng đơn điệu khi biết bảng biến thiên). + Dạng toán 11. Logarits (Rút gọn biểu thức Logarits đơn giản). + Dạng toán 12. Khối Nón – Trụ – Cầu (Công thức diện tích xung quanh của trụ). + Dạng toán 13. Cực trị của hàm số (Tìm điểm cực trị khi biết bảng biến thiên). + Dạng toán 14. Khảo sát và vẽ đồ thị hàm số (Tìm hàm số khi biết đồ thị). + Dạng toán 15. Tiệm cận (Tìm tiệm cận ngang của hàm số). + Dạng toán 16. Bất phương trình Mũ – Logarits (Giải bất phương trình Logarit). + Dạng toán 17. Sự tương giao đồ thị (Đếm số nghiệm của phương trình khi biết đồ thị). + Dạng toán 18. Nguyên hàm – Tích phân (Tính tích phân dựa vào tính chất tích phân). + Dạng toán 19. Số phức (Tìm số phức liên hợp). + Dạng toán 20. Số phức (Tìm phần thực của tổng của hai số phức). + Dạng toán 21. Số phức (Tìm điểm biểu diễn của số phức). + Dạng toán 22. Hệ Oxyz (Tìm tọa độ hình chiếu của điểm lên mặt phẳng tọa độ). + Dạng toán 23. Hệ Oxyz (Tìm tọa độ tâm mặt cầu). + Dạng toán 24. Phương trình mặt phẳng (Tìm tọa đọ véc tơ pháp tuyến). + Dạng toán 25. Phương trình đường thẳng (Tìm tọa độ điểm thuộc đường thẳng đã cho). [ads] + Dạng toán 26. Quan hệ vuông góc trong không gian (Tìm góc giữa đường thẳng và mặt phẳng). + Dạng toán 27. Cực trị của hàm số (Tìm số điểm cực trị khi biết bảng biến thiên). + Dạng toán 28. GTLN và GTNN (Tìm GTLN – GTNN của hàm số trên đoạn). + Dạng toán 29. Logarits (Biểu diễn các tham số trong biểu thức Logarits đơn giản). + Dạng toán 30. Khảo sát và vẽ đồ thị hàm số (Tìm số giao điểm của đồ thị hàm số và trục hoành). + Dạng toán 31. Bất phương trình Mũ – Logarits (Giải Bphương trình Mũ). + Dạng toán 32. Mặt Nón – Trụ – Cầu (Tính diện tích xung quanh hình nón ). + Dạng toán 33. Nguyên hàm – Tích phân (Nhận dạng tích phân khi đổi biến). + Dạng toán 34. Ứng dụng tích phân (Tính diện tích hình phẳng). + Dạng toán 35. Số phức (Tìm phần ảo của tích hai số phức). + Dạng toán 36. Số phức (Phương trình bậc hai với hệ số thực). + Dạng toán 37. Phương trình đường thẳng trong Oxyz (Tổng hợp liên quan đường thẳng và mặt phẳng). + Dạng toán 38. Phương trình đường thẳng trong Oxyz (Lập phương trình đồ thị qua hai điểm). + Dạng toán 39. Tổ hợp – Xác suất (Tính xác suất biến cố). + Dạng toán 40. Khoảng cách (Khoảng cách giữa hai đường thẳng chéo nhau). + Dạng toán 41. Tính đơn điệu của hàm số (Tìm m để hàm số đồng biến trên R). + Dạng toán 42. Hàm số Mũ – Hàm số Logarits (Bài toán thực tế). + Dạng toán 43. Khảo sát và vẽ đồ thị hàm số (Nhận dạng các hệ số của hàm phân thức khi biết bảng biến thiên). + Dạng toán 44. Khối Nón – Trụ – Cầu (Bài toán thực tế tính thể tích của khối trụ). + Dạng toán 45. Nguyên hàm – Tích Phân (Tính tích phân hàm ẩn). + Dạng toán 46. Khảo sát và vẽ đồ thị hàm số (Tìm số nghiệm của phương trình liên quan đến sinx khi biết bảng biến thiên). + Dạng toán 47. Hàm số Mũ – Logarits (Tìm GTLN – GTNN của biểu thức hai ẩn phụ thuộc vào biểu thức mũ – logarits). + Dạng toán 48. GTLN – GTNN (Tìm GTLN – GTNN của hàm phụ thuộc tham số trên đoạn). + Dạng toán 49. Thể tích khối đa diện (Thể tích khối đa diện cắt ra từ một khối khác). + Dạng toán 50. Phương trình Mũ – Logarits (Tìm số ẩn hoặc mối liên hệ giữa các ẩn trong phương trình Logarits chứa hai ẩn).
Phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020
Hiện nay, một số trường THPT trên cả nước đã bắt đầu cho học sinh trở lại trường, sau một khoảng thời gian rất dài phải nghỉ học do bệnh dịch. Và sắp tới là quãng thời gian các em phải “tăng tốc” để có thể hoàn thành chương trình của năm học, nhất là với các em học sinh khối 12, còn phải chuẩn bị cho kỳ thi THPT Quốc gia do Bộ Giáo dục và Đào tạo tổ chức. Nhằm giúp các em trong quá trình học tập, sưu tầm và giới thiệu đến các em tài liệu phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020, đây là một sản phẩm của tập thể quý thầy, cô giáo nhóm Geogebra – Nguyễn Chín Em. Tài liệu gồm có 218 trang, sáng tạo và phát triển một số câu hỏi và bài tập dựa trên cấu trúc đề minh họa THPTQG 2020 môn Toán, có đáp án và lời giải chi tiết. [ads] Trích dẫn tài liệu phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020: + Cho hàm số y = |8x^4 + ax2 + b|. Trong đó a, b là các hệ số thực. Tìm mối liên hệ giữa a và b để giá trị lớn nhất của hàm số đã cho trên đoạn [−1; 1] bằng 1? + Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên có ba chữ số đôi một khác nhau. Xác suất để chọn được số có chữ số hàng trăm, chữ số hàng đơn vị và tổng các chữ số theo thứ tự tạo thành 1 cấp số cộng có công sai dương. + Trong mặt phẳng tọa độ A, B, C là ba điểm biểu diễn lần lượt cho ba số phức z1 = 5 − i, z2 = (4 + i)^2 và z3 = (2i)^3. Diện tích của tam giác ABC là kết quả nào dưới đây?
Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề
Tài liệu gồm 105 trang được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC, tập trung khai thác và phát triển các câu hỏi và bài toán trong đề minh họa THPT Quốc gia 2020 môn Toán. Với mỗi bài toán, tài liệu trình bày lời giải chi tiết theo nhiều cách (nếu có), cùng với đó là một số câu hỏi và bài toán tương tự; qua đó giúp học sinh rèn luyện với những dạng toán bám sát, chất lượng. Tài liệu được chia thành hai phần dựa theo mức độ nhận thức: + Phần 1. Mức độ Nhận biết – Thông hiểu: Từ trang 1 đến trang 68. + Phần 2. Mức độ Vận dụng: Từ trang 69 đến trang 105. [ads] Trích dẫn đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề: + Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng qua đỉnh của hình nón và cắt hình nón theo thiết diện là tam giác vuông có diện tích bằng 4. Góc giữa đường cao của hình nón và mặt phẳng thiết diện bằng 30◦. Thể tích của khối nón được giới hạn bởi hình nón đã cho bằng? + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình f (sinx) = 3sinx + m có nghiệm thuộc khoảng (0;π). Tổng các phần tử của S bằng? + Trong không gian Oxyz, cho mặt cầu (S) : x2 + y2 + z2 − 4x − 2y + 2z − 3 = 0 và một điểm M (4; 2; −2). Mệnh đề nào sau đây là đúng? A. Điểm M là tâm của mặt cầu (S). B. Điểm M nằm trên mặt cầu (S). C. Điểm M nằm trong mặt cầu (S). D. Điểm M nằm ngoài mặt cầu (S).
Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán
Dựa trên đề thi tham khảo kỳ thi THPT Quốc gia năm 2020 môn Toán do Bộ Giáo dục và Đào tạo công bố, vừa qua, tập thể quý thầy, cô giáo nhóm Toán VD – VDC đã biên soạn bộ câu hỏi và bài tập phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán, nhằm giúp các em học sinh khối 12 có được tài liệu ôn tập bám sát, chất lượng để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020. Tài liệu phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán gồm có 42 trang, là sản phẩm đặc biệt của Tổ Phản Biện Các Sản Phẩm Quan Trọng Của Nhóm Toán VD – VDC. Với mỗi câu trong đề, tài liệu bổ sung thêm 3-5 câu hỏi và bài toán tương tự, có đáp án và lời giải chi tiết. Trích dẫn bộ đề phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: + Định hướng xây dựng bài toán: Bài toán giữ nguyên ý tưởng câu 43 (sử dụng phương pháp đặt ẩn phụ) thay đổi cách đặt vấn đề và phương trình mũ thay cho phương trình logarit: “Tính tổng T các giá trị nguyên của tham số m để phương trình 3^x + (m^2 – m)3^-x = 2m có đúng hai nghiệm phân biệt nhỏ hơn 1/log3”. [ads] + Phát triển câu 32, sử dụng ứng dụng của tích vô hướng vào việc quỹ tích điểm M thỏa mãn đẳng thức cho trước, bài toán có sử dụng việc khai thác điểm trung gian: “Trong không gian Oxyz, cho A(2;0;4) và B(0;-6;0), M là một điểm bất kỳ thỏa mãn 3MA^2 + 2MB^2 = 561/280AB^2. Khi đó M thuộc mặt cầu có bán kính là giá trị nào dưới đây?” + Phát triển câu 50 thành bài toán tìm khoảng đồng biến và nghịch biến của hàm số chứa dấu giá trị tuyệt đối: “Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết f(0) = 0 và đồ thị hàm số y = f'(x) như hình sau. Hàm số g(x) = |4f(x) + x^2| đồng biến trên khoảng nào dưới đây?”