Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 8 năm 2019 - 2020 phòng GDĐT Lập Thạch - Vĩnh Phúc

Thứ Tư ngày 11 tháng 12 năm 2019, phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 8 giai đoạn cuối học kỳ 1 năm học 2019 – 2020. Đề thi học kỳ 1 Toán 8 năm học 2019 – 2020 phòng GD&ĐT Lập Thạch – Vĩnh Phúc được biên soạn theo dạng đề kết hợp giữa trắc nghiệm khách quan và tự luận, phần trắc nghiệm gồm có 06 câu, chiếm 03 điểm, phần tự luận gồm có 05 câu, chiếm 07 điểm, thời gian làm bài là 90 phút. Trích dẫn đề thi học kỳ 1 Toán 8 năm 2019 – 2020 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Cho tam giác ABC vuông tại A, M là trung điểm của BC. Đường thẳng qua M song song với AB cắt AC tại D, đường thẳng qua M song song với AC cắt AB tại E. a) Chứng minh rằng tứ giác ADME là hình chữ nhật. b) Nếu AB = AC thì các tứ giác ADME, BEDC là hình gì? Vì sao? + Chứng minh rằng với mọi số nguyên m, n ta đều có m^3.n – m.n^3 chia hết cho 6. + Một thửa ruộng hình chữ nhật có chiều dài 20m, chiều rộng 5m. Diện tích thửa ruộng bằng?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 8 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 8 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề kiểm tra học kỳ 1 Toán 8 : Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm M bất kì. Gọi D, E lần lượt là chân đường vuông góc kẻ từ M xuống các cạnh AB và AC. a) Tứ giác ADME là hình gì? vì sao? b) Điểm M ở vị trí nào trên cạnh BC để tứ giác ADME là hình vuông? c) Gọi I là trung điểm đoạn thẳng BM và K là trung điểm đoạn thẳng CM và tứ giác DEKI là hình bình hành. Chứng minh rằng DE là đường trung bình tam giác ABC. Giải: a) Xét tứ giác ADME có: Góc DAE = 90 độ (vì tam giác ABC vuông tại A) Góc ADM = 90 độ (Vì MD ⊥ AB tại D) Góc AEM = 90 độ (Vì ME ⊥ AC tại E) Suy ra tứ giác ADME là hình chữ nhật. b) Để tứ giác ADME là hình vuông thì hình chữ nhật ADME có AM là tia phân giác của góc DAE, suy ra điểm M là giao điểm của đường phân giác góc BAC với cạnh BC của tam giác ABC. [ads] c) Theo giả thiết tứ giác DEKI là hình bình hành nên DI = EK, mà DI = 1/2.BM, EK = 1/2.CM (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông, áp dụng vào tam giác BDM vuông tại D, tam giác CEM vuông tại E) Do đó: BM = CM ⇒ M là trung điểm của BC (1) Lại có MD ⊥ AB và AC ⊥ AB nên MD // AC (2) Từ (1) và (2) suy ra D là trung điểm cạnh AB (*) Chứng minh tương tự ta có E là trung điểm cạnh AC (**) Từ (*) và (**) suy ra DE là đường trung bình tam giác ABC. (đpcm)
Đề khảo sát chất lượng học kỳ 1 Toán 8 năm học 2017 - 2018 phòng GD và ĐT Bảo Thắng - Lào Cai
Đề khảo sát chất lượng học kỳ 1 Toán 8 năm học 2017 – 2018 phòng GD và ĐT Bảo Thắng – Lào Cai gồm 7 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 8 : + Một mảnh vườn lúc đầu có dạng tam giác ABC vuông tại A, bờ rào AB dài 5m, rào AC dài 12m. Người ta sử dụng lưới ngăn dọc theo hai điểm E; M. (E là trung điểm của AC và M là trung điểm của BC) để chia mảnh vườn thành hai phần trồng rau và hoa. a) Tính độ dài của lưới ME phải dùng b) Mảnh vườn AEMB là hình gì? Vì sao? c) Tính diện tích phần vườn ECM? [ads] + Hình bình hành là: A. Tứ giác có hai cạnh đối bằng nhau B. Tứ giác có các cặp cạch đối bằng nhau C. Tứ giác có các cặp cạnh đối song song D. Hình thang có hai đường chéo bằng nhau + Hình nào sau đây không có tâm đối xứng? A. Hình bình hành B. Hình thang cân C. Hình chữ nhật D.Cả ba hình trên