Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 3 năm 2023 - 2024 phòng GDĐT Lạng Giang - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Lạng Giang, tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm + 70% tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 17 tháng 05 năm 2023. Trích dẫn Đề thi thử Toán vào 10 lần 3 năm 2023 – 2024 phòng GD&ĐT Lạng Giang – Bắc Giang : + Với sự phát triển của khoa học kỹ thuật hiện nay, nguời ta tạo ra nhiều mẫu xe lăn đẹp và tiện dụng cho người khuyết tật. Công ty A đã sản xuất ra những chiếc xe lăn cho nguời khuyết tật với số vốn ban đầu là triệu đồng. Chi phí để sản xuất ra một chiếc xe lăn là đồng. Giá bán ra mỗi chiếc là đồng. Viết hàm số y biểu diễn tổng số tiền (triệu đồng) đã đầu tư đến khi sản xuất ra được chiếc xe lăn (gồm vốn ban đầu và chi phí sản xuất) được là? + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Nhân dịp ngày nghỉ lễ 30/4 và 01/5. Một cửa hàng ở Lạng Giang có chương trình khuyến mại giảm giá cho 15% cho mặt hàng thứ nhất và 20% cho mặt hàng thứ hai trở đi. Một người mua hai loại hàng và phải trả tổng cộng 2 17 triệu đồng, kể cả thuế giá trị gia tăng (VAT) với mức 10% đối với loại hàng loạt hàng thứ nhất và 8% đối với loại hàng thứ hai. Nếu thuế VAT là 9% đối với cả hai loại hàng thì người đó phải trả tổng cộng 2 18 triệu đồng. Hỏi nếu không kể thuế VAT thì người đó phải trả bao nhiêu tiền cho mỗi loại hàng? + Từ điểm M nằm ngoài đường tròn O kẻ hai tiếp tuyến MA, MB với O (A, B là hai tiếp điểm). Vẽ cát tuyến MCD với O sao cho MC MD và tia MD nằm giữa hai tia MA và MO. Gọi E là trung điểm của CD. 1. Chứng minh tứ giác MEOB nội tiếp. 2. Kẻ AB cắt MD tại I, cắt MO tại H. Chứng minh EA EB EI EM và MHC OCE. 3. Từ C kẻ đường thẳng vuông góc với OA cắt AE tại K. Chứng minh IK AC.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hưng Yên
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hưng Yên Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2022 2023 của sở GD ĐT Hưng Yên Đề thi tuyển sinh THPT môn Toán năm 2022 2023 của sở GD ĐT Hưng Yên Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Hưng Yên. Đề thi có mã đề 117 bao gồm 04 trang với tổng cộng 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan. Thời gian làm bài thi là 90 phút (không tính thời gian giám thị phát đề). Đề thi này được thiết kế để đánh giá năng lực và kiến thức của học sinh trong môn Toán, giúp các em chuẩn bị tốt nhất cho kỳ thi quan trọng sắp tới. Hy vọng rằng đề thi sẽ giúp các em rèn luyện và tự tin hơn khi bước vào cuộc thi. Chúc quý thầy cô và các em học sinh thành công và đạt kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD Bà Rịa Vũng Tàu Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD Bà Rịa Vũng Tàu Xin chào quý thầy, cô giáo và các em học sinh lớp 9! Hôm nay, SYTU xin giới thiệu đến các bạn đề thi chính thức tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu. Đề thi dự kiến sẽ được tổ chức vào ngày thứ Tư, 08 tháng 06 năm 2022. Dưới đây là một số câu hỏi trong đề tuyển sinh: Một người đi xe máy từ địa điểm A đến địa điểm B trên quãng đường 100 km. Khi quay về từ B về A, người đó đã giảm vận tốc 10 km/h so với lúc đi, khiến thời gian đi và về khác nhau 30 phút. Hãy tính vận tốc của người đó khi đi. Từ điểm M nằm bên ngoài đường tròn (O), kẻ hai tiếp tuyến MA, MB của (O). Một đường thẳng qua M và không đi qua O cắt (O) tại hai điểm C và D, trong đó C nằm giữa M, D và A thuộc cung nhỏ CD. Hãy chứng minh các công thức liên quan và quan hệ giữa các điểm này. Với các số thực x, y, z thỏa mãn ràng buộc x >= 1, y >= 1, z >= 1 và x^2 + 2y^2 + 3z^2 = 15. Hãy tìm giá trị nhỏ nhất của biểu thức P = x + y + z. Đây chỉ là một phần nhỏ trong đề tuyển sinh với nhiều câu hỏi hấp dẫn và thách thức. Chúc quý thầy, cô giáo và các em học sinh lớp 9 rèn luyện và tự tin để vượt qua kỳ thi sắp tới. Hy vọng rằng đề thi sẽ giúp các em phát triển kỹ năng và kiến thức Toán một cách toàn diện.
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Lạng Sơn
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Lạng Sơn Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Lạng Sơn Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Lạng Sơn Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Lạng Sơn. Trích dẫn một số câu hỏi từ đề thi tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Lạng Sơn: Cho phương trình bậc hai với tham số m: x2 – 2(m + 1)x + 2m – 3 = 0. Giải phương trình khi m = 0. Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị m. Tìm tất cả các giá trị của m thỏa mãn điều kiện x1 + x2 – 2x1x2 = 1. Giải các phương trình và hệ phương trình sau. Cho đường tròn (O) đường kính AB. Dây cung MN vuông góc với AB, (AM < BM). Hai đường thẳng BM và NA cắt nhau tại K. Gọi H là chân đường vuông góc kẻ từ K đến đường thẳng AB. a. Chứng minh rằng tứ giác AHKM nội tiếp trong một đường tròn. b. Chứng minh rằng NB.HK = AN.HB. c. Chứng minh HM là tiếp tuyến của đường tròn (O). Hy vọng rằng các em học sinh sẽ tự tin và thành công trong kỳ thi sắp tới. Chúc quý thầy cô giáo và các em đạt kết quả cao trong bài thi!
Đề vào môn Toán (chuyên) 2022 2023 trường chuyên Nguyễn Trãi Hải Dương
Nội dung Đề vào môn Toán (chuyên) 2022 2023 trường chuyên Nguyễn Trãi Hải Dương Bản PDF - Nội dung bài viết Đề vào môn Toán (chuyên) 2022 2023 trường chuyên Nguyễn Trãi Hải Dương Đề vào môn Toán (chuyên) 2022 2023 trường chuyên Nguyễn Trãi Hải Dương Xin chào quý thầy cô và các em học sinh lớp 9! Sytu hân hạnh giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 của trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương. Trích dẫn đề thi môn Toán (chuyên) 2022 – 2023 trường chuyên Nguyễn Trãi – Hải Dương: + Bài 1: Cho đa thức \( P(x) \) với các hệ số nguyên thỏa mãn \( P(2021) \times P(2022) = 2023 \). Chứng minh rằng biểu thức \( P(x) - 2024 \) không có nghiệm nguyên. + Bài 2: Cho đường tròn \( (O) \) và dây cung \( AB \) không đi qua tâm \( O \). Gọi \( M \) là điểm chính giữa của cung nhỏ \( AB \); \( D \) là một điểm thay đổi trên cung lớn \( AB \) (\( D \) khác \( A \) và \( B \)); \( DM \) cắt \( AB \) tại \( C \). a. Chứng minh rằng \( MB \cdot BD = MD \cdot BC \); b. Chứng minh rằng \( MB \) là tiếp tuyến của đường tròn ngoại tiếp tam giác \( BCD \) và khi điểm \( D \) thay đổi thì tâm đường tròn ngoại tiếp tam giác \( BCD \) nằm trên một đường thẳng cố định. + Bài 3: Cho hình thoi \( ABCD \) có \( AB = 2 \). Gọi \( R1 \) và \( R2 \) lần lượt là bán kính đường tròn ngoại tiếp các giác \( ABC \) và \( ABD \). Chứng minh rằng \( R1 + R2 \geq 2 \). Đây là những bài toán thú vị và hấp dẫn, hy vọng các em sẽ thấy niềm vui và hứng thú trong quá trình giải quyết. Chúc các em thành công!