Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình thoi

Tài liệu gồm 32 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình thoi, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CB – NC Dạng 1. Chứng minh tứ giác là hình thoi. Phương pháp: Sử dụng các dấu hiệu nhận biết. + Tứ giác có bốn cạnh bằng nhau là hình thoi. + Hình bình hành có hai cạnh kề bằng nhau là hình thoi. + Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi. + Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi. Dạng 2. Vận dụng tính chất của hình thoi để chứng minh các tính chất hình học. Phương pháp: Sử dụng tính chất và định nghĩa của hình thoi để giải toán. + Hình thoi là tứ giác có bốn cạnh bằng nhau. + Hình thoi có tất cả các tính chất của hình bình hành: Các cạnh đối song song và bằng nhau, các góc đối bằng nhau. Hai đường chéo cắt nhau tại trung điểm của mỗi đường. + Ngoài ra, trong hình thoi có: Hai đường chéo vuông góc với nhau. Hai đường chéo là các đường phân giác của các góc của hình thoi. Dạng 3. Tìm điều kiện để tứ giác là hình thoi. Phương pháp giải: Vận dụng định nghĩa, các tính chất và dấu hiệu nhận biết của hình thoi. Dạng 4. Tổng hợp. B. PHIẾU BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY Dạng 1: Nhận biết tứ giác là hình thoi. Dạng 2. Sử dụng tính chất hình thoi để tính toán, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, các đường thẳng vuông góc. Dạng 3. Tìm điều kiện để tứ giác là hình thoi. C. PHIẾU BÀI TỰ LUYỆN CB – NC Dạng 1: Chứng minh một tứ giác là hình thoi. Dạng 2: Vận dụng kiến thức hình thoi để chứng minh và giải toán.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phép nhân và phép chia các đa thức
Nội dung Chuyên đề phép nhân và phép chia các đa thức Bản PDF - Nội dung bài viết Chuyên đề phép nhân và phép chia các đa thức Chuyên đề phép nhân và phép chia các đa thức Để giúp học sinh bồi dưỡng năng lực học tập môn Toán lớp 8 chương 1, Sytu giới thiệu tài liệu chuyên đề phép nhân và phép chia các đa thức. Tài liệu này bao gồm các kiến thức cơ bản, hướng dẫn mẫu và bài tập tự luận. Trước hết, chúng ta cần hiểu cách nhân đơn thức với đa thức. Khi nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức rồi cộng các tích lại với nhau. Cách nhân đa thức với đa thức cũng tương tự, ta nhân từng hạng tử của đa thức này với từng hạng tử của đa thức kia và cộng các tích lại với nhau. Ngoài ra, tài liệu cũng giới thiệu những hằng đẳng thức đáng nhớ như bình phương của một tổng, bình phương của một hiệu, lập phương của một tổng, lập phương của một hiệu, tổng hai lập phương, hiệu hai lập phương. Các hằng đẳng thức này giúp chúng ta giải quyết các bài toán phức tạp một cách dễ dàng hơn. Phần cuối của tài liệu đề cập đến cách phân tích đa thức thành nhân tử. Các phương pháp như đặt nhân tử chung, sử dụng hằng đẳng thức, nhóm hạng tử giúp chúng ta phân tích đa thức một cách hiệu quả. Ngoài ra, khi cần, ta có thể phối hợp nhiều phương pháp để giải quyết bài toán phân tích đa thức thành nhân tử. Trên hết, tài liệu cũng giới thiệu cách chia đơn thức cho đơn thức và chia đa thức cho đơn thức. Việc này yêu cầu chúng ta tỉ mỉ trong việc chia các hạng tử để đạt được kết quả chính xác. Với tài liệu này, học sinh sẽ có cơ hội học tập và ôn tập kỹ năng phép nhân và phép chia các đa thức một cách hiệu quả, từ đó nâng cao khả năng giải các bài toán liên quan trong chương trình Toán lớp 8.
Các dạng toán và phương pháp giải lớp 8 môn Toán – Ngô Văn Thọ
Nội dung Các dạng toán và phương pháp giải lớp 8 môn Toán – Ngô Văn Thọ Bản PDF - Nội dung bài viết Các dạng toán và phương pháp giải lớp 8 môn Toán – Ngô Văn ThọPHẦN A: ĐẠI SỐ 8PHẦN B: HÌNH HỌC 8 Các dạng toán và phương pháp giải lớp 8 môn Toán – Ngô Văn Thọ Tài liệu "Các dạng toán và phương pháp giải lớp 8 môn Toán" được biên soạn bởi thầy Ngô Văn Thọ, gồm 202 trang phân dạng và hướng dẫn phương pháp giải Toán lớp 8 toàn tập, bao gồm cả Đại số và Hình học. Mỗi chuyên đề trong tài liệu đều được phân dạng chi tiết, cung cấp các bước giải toán, ví dụ minh họa có giải chi tiết và phần bài tập áp dụng để học sinh tự luyện. PHẦN A: ĐẠI SỐ 8 Chương I: Phép nhân và phép chia các đa thức bao gồm các phần như nhân đơn thức với đa thức, hằng đẳng thức, phân tích đa thức thành nhân tử và phương pháp giải đa thức. Các phương pháp giải bao gồm cách đặt nhân tử chung, nhóm nhiều hạng tử, dùng hằng đẳng thức, chia đa thức và nhiều phương pháp khác. Chương II: Phân thức đại số bao gồm tính chất cơ bản của phân thức đại số, phân thức bằng nhau, rút gọn phân thức và các phép toán về phân thức. Phương pháp giải toán với phân thức đại số như tìm điều kiện để phân thức có nghĩa, tìm giá trị của biến để phân thức nhận một giá trị nào đó. Chương III: Phương trình bậc nhất một ẩn bao gồm mở đầu về phương trình, phương trình bậc nhất một ẩn và giải toán bằng cách lập phương trình. Các vấn đề như loại so sánh, loại tìm số gồm hai, ba chữ số và các loại khác. Chương IV: Bất phương trình bậc nhất một ẩn bao gồm bất đẳng thức, bất phương trình bậc nhất một ẩn và phương trình chứa dấu giá trị tuyệt đối. PHẦN B: HÌNH HỌC 8 Chương I: Tứ giác bao gồm tứ giác, hình thang – hình thang vuông, hình thang cân, đường trung bình của tam giác và của hình thang, đối xứng trục, hình bình hành, hình chữ nhật, hình thoi và hình vuông. Chương II: Đa giác Chương III: Tam giác đồng dạng bao gồm định lí Ta-lét trong tam giác, tam giác đồng dạng và cách vận dụng để tính toán, chứng minh và giải các bài toán liên quan. Đây là tài liệu cung cấp kiến thức căn bản và phương pháp giải toán đầy đủ và chi tiết, giúp học sinh lớp 8 hiểu rõ và áp dụng vào thực hành môn Toán một cách hiệu quả.