Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán khó về quan hệ vuông góc

Tài liệu gồm 111 trang, được biên soạn bởi nhóm tác giả Tư Duy Mở, tuyển chọn các bài toán hay và khó về chủ đề vectơ trong không gian, quan hệ vuông góc, thuộc chương trình Hình học 11 chương 3, có đáp án và lời giải chi tiết. 1. Phương pháp vector Đây là một phương pháp rất mạnh để xử lý các bài toán có yếu tố vuông góc ví dụ như hình hộp chữ nhật, hình lập phương, khối tứ diện đều. 1.1 Cơ sở của phương pháp vector. + Quy tắc hình hộp. + Quy tắc trọng tâm tứ diện. + Quy tắc đồng phẳng. 1.2 Các dạng toán và phương pháp giải. Dạng toán 1 . Chứng minh đẳng thức vector. Sử dụng quy tắc cộng, quy tắc trừ ba điểm, quy tắc trung điểm đoạn thẳng, trọng tâm tam giác, trọng tâm tứ giác, quy tắc hình bình hành, quy tắc hình hộp … để biến đổi vế này thành vế kia. Dạng toán 2 . Ba vector đồng phẳng và bốn điểm đồng phẳng. + Để chứng minh ba vector a, b, c đồng phẳng ta có thể thực hiện theo một trong các cách sau: 1. Chứng minh giá của ba vector a, b, c cùng song song với một mặt phẳng. 2. Phân tích c = ma + nb trong đó a, b là hai vector không cùng phương. + Để chứng minh bốn điểm A, B, C, D đồng phẳng ta có thể chứng minh ba vector AB, AC, AD đồng phẳng. Ngoài ra có thể sử dụng kết quả quen thuộc sau: Điều kiện cần và đủ để điểm D thuộc (ABC) là với mọi điểm O bất kì ta có OD = xOA + yOB + zOC trong đó x + y + z = 1. Tính chất trên gọi là tâm tỉ cự trong không gian. Dạng toán 3 . Tính độ dài đoạn thẳng. Để tính độ dài của một đoạn thẳng theo phương pháp vector ta sử dụng cơ sở a2 = |a|2 ⇒ |a| = √a2. 2. Ứng dụng của phương pháp Vector trong một số bài toán đặc biệt 2.1 Góc tạo bởi hai cạnh bất kì của một tứ diện. 2.2 Bổ đề về đường trung bình. 2.3 Ứng dụng trong một số bài toán cực trị. 3. Tuyển tập các bài toán trắc nghiệm khó

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề hai mặt phẳng vuông góc
Tài liệu gồm 49 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hai mặt phẳng vuông góc, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Góc giữa hai mặt phẳng. 2) Hai mặt phẳng vuông góc. 3) Một số khối hình đặc biệt. II. PHÂN DẠNG BÀI TẬP VÀ HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1 : Chứng minh hai mặt phẳng vuông góc. Để chứng minh hai mặt phẳng P và Q vuông góc với nhau ta sẽ chứng minh: + Một đường thẳng d nằm trong mặt phẳng P vuông góc với mặt phẳng Q hoặc một đường thẳng nào đó nằm trong mặt phẳng Q và vuông góc với mặt phẳng P. + Góc giữa hai mặt phẳng P và Q bằng 90o. Dạng 2 : Bài toán dựng thiết diện có yếu tố vuông góc. Dạng 3 : Xác định và tính góc giữa hai mặt phẳng. Loại 1: Góc giữa mặt bên và mặt đáy. Loại 2: Góc giữa hai mặt bên. Loại 3: Sử dụng công thức diện tích hình chiếu để tính góc giữa hai mặt phẳng.
Tài liệu chủ đề đường thẳng vuông góc với mặt phẳng
Tài liệu gồm 53 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề đường thẳng vuông góc với mặt phẳng, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Đường thẳng vuông góc với mặt phẳng. 2) Góc giữa đường thẳng và mặt phẳng. II. PHÂN DẠNG BÀI TẬP VÀ HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1 : Chứng minh đường thẳng vuông góc với mặt phẳng. Để chứng minh đường thẳng d vuông góc với mặt phẳng P ta chứng minh: + d vuông góc với hai đường thẳng cắt nhau nằm trong P. + d song song với đường thẳng a mà a vuông góc với P. Dạng 2 : Chứng minh hai đường thẳng vuông góc bằng cách chứng minh đường thẳng này vuông góc với mặt phẳng chứa đường thẳng kia. + Muốn chứng minh đường thẳng a vuông góc với đường thẳng b, ta đi tìm mặt phẳng chứa đường thẳng b sao cho việc chứng minh a dễ thực hiện. + Sử dụng định lý ba đường vuông góc. Dạng 3 : Xác định và tính góc giữa đường thẳng và mặt phẳng. + Loại 1: Góc giữa cạnh bên và mặt đáy. + Loại 2: Góc giữa cạnh bên và mặt phẳng chứa đường cao + Loại 3: Góc giữa đường cao và mặt bên. + Loại 4: Góc giữa cạnh bên và mặt bên (dạng toán nâng cao). Dạng 4 : Thiết diện vuông góc với một đường thẳng cho trước. Giả sử thiết diện là một phần của mặt phẳng P và P d. Khi đó ta tìm mặt trung gian dễ thấy và d // P và quy về thiết diện có yếu tố song song đã biết.
Tài liệu chủ đề hai đường thẳng vuông góc
Tài liệu gồm 25 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hai đường thẳng vuông góc, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Tích vô hướng của hai vectơ trong không gian. 2) Góc giữa hai đường thẳng trong không gian. 3) Hai đường thẳng vuông góc. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Bài toán khoảng cách trong không gian
Tài liệu gồm 63 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán khoảng cách trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: KHOẢNG CÁCH TỪ ĐIỂM ĐẾN MẶT PHẲNG. + Dạng 1: Khoảng cách từ một điểm trên mặt phẳng đáy tới mặt phẳng chứa đường cao. + Dạng 2: Khoảng cách từ chân đường cao đến mặt phẳng bên. + Dạng 3: Khoảng cách từ một điểm bất kỳ đến mặt bên. + Dạng 4: Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song. Vấn đề 2: KHOẢNG CÁCH GIỮA HAI ĐƯỜNG THẲNG CHÉO NHAU. + Dạng 1: Khoảng cách giữa hai đường thẳng chéo nhau và vuông góc với nhau. + Dạng 2: Tính khoảng cách giữa hai đường thẳng chéo nhau không vuông góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.