Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán phương trình đường thẳng và một số bài toán liên quan

Trong quá trình luyện tập với các đề thi thử THPT Quốc gia môn Toán, chắc chắn không ít lần các em bắt gặp các bài toán về chủ đề phương trình đường thẳng và một số bài toán liên quan đến phương trình đường thẳng, bởi đây là một nội dung quan trọng của chương trình Toán 12 và chương trình Toán THPT nói chung. Nhằm giúp các em học sinh khối 12 có thể tự ôn tập theo các chuyên đề riêng biệt, thầy Nguyễn Bảo Vương đã tổng hợp và biên soạn tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan, với các bài toán được phân loại theo từng dạng toán cụ thể, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan: PHẦN A . CÂU HỎI Dạng toán 1. Xác định VTCP (Trang 2). Dạng toán 2. Xác định phương trình đường thẳng (Trang 4). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 4). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 6). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 10). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 11). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 14). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 14). + Dạng toán 3.2 Bài toán cực trị (Trang 17). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 19). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 19). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 20). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 22). + Dạng toán 4.4 Bài toán cực trị (Trang 25). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 30). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 32). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 32). + Dạng toán 7.1 Bài toán tìm điểm (Trang 32). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 34). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 34). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 35). + Dạng toán 7.5 Bài toán cực trị (Trang 37). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng toán 1. Xác định VTCP (Trang 40). Dạng toán 2. Xác định phương trình đường thẳng (Trang 41). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 41). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 43). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 48). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 50). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 58). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 58). + Dạng toán 3.2 Bài toán cực trị (Trang 61). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 65). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 65). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 67). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 69). + Dạng toán 4.4 Bài toán cực trị (Trang 78). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 95). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 97). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 99). + Dạng toán 7.1 Bài toán tìm điểm (Trang 99). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 102). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 104). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 106). + Dạng toán 7.5 Bài toán cực trị (Trang 112).

Nguồn: toanmath.com

Đọc Sách

Ứng dụng phương pháp tọa độ để giải các bài toán hình học không gian
Tài liệu cung cấp cách gắn hệ trục tọa độ Oxyz vào các khối đa diện thường gặp. Các ví dụ minh họa điển hình kèm theo giải thích chi tiết sẽ giúp bạn đọc nắm kĩ hơn về kĩ thuật tọa độ hóa. Bước 1 . Chọn hệ trục tọa độ Oxyz trong không gian Ta có: Ox, Oy, Oz vuông góc với nhau từng đôi một. Do đó, nếu hình vẽ bài toán cho có chứa các cạnh vuông góc thì ta ưu tiên chọn các cạnh đó làm trục tọa độ. Cụ thể: Với hình lập phương hoặc hình hộp chữ nhật ABCD.A’B’C’D’ Với hình lập phương Chọn hệ trục tọa độ sao cho: A(0; 0; 0); B(a; 0; 0); C(a; a; 0); D(0; a; 0) A’(0; 0; a); B’(a; 0; a); C’(a; a; 0); D’(0; a; a) Với hình hộp chữ nhật Chọn hệ trục tọa độ sao cho: A(0; 0; 0); B(a; 0; 0); C(a; b; 0); D(0; b; 0) A’(0; 0; c); B’(a; 0; c); C’(a; b; c); D’(0; b; c) Với hình hộp đáy là hình thoi ABCD.A’B’C’D’ Chọn hệ trục tọa độ sao cho: + Gốc tọa độ trùng với giao điểm O của hai đường chéo của hình thoi ABCD + Trục Oz đi qua 2 tâm của 2 đáy [ads] Với hình chóp tứ giác đều S.ABCD Với hình chóp tam giác đều S.ABC Với hình chóp S.ABCD có ABCD là hình chữ nhật và SA ⊥ (ABCD) Với hình chóp S.ABC có ABCD là hình thoi và SA ⊥ (ABCD) Với hình chóp S.ABC có SA ⊥ (ABC) và Δ ABC vuông tại A Với hình chóp S.ABC có SA ⊥ (ABC) và Δ ABC vuông tại B Với hình chóp S.ABC có (SAB) ⊥ (ABC), Δ SAB cân tại S và Δ ABC vuông tại C Với hình chóp S.ABC có (SAB) ⊥ (ABC), Δ SAB cân tại S và Δ ABC vuông tại A Bước 2 . Sử dụng các kiến thức về tọa độ để giải quyết bài toán Các dạng câu hỏi thường gặp: Khoảng cách, góc, diện tích thiết diện, thể tích khối đa diện Một số kiến thức Hình học bổ sung Bài tập vận dụng
Phương pháp tọa độ hóa để giải bài toán hình học không gian - Nguyễn Hồng Điệp
Tài liệu gồm 16 trang hướng dẫn phương pháp tọa độ hóa để giải các bài toán hình học không gian, tài liệu do thầy Nguyễn Hồng Điệp biên soạn. Nội dung tài liệu : 1. Các công thức 2. Xác định tọa độ điểm 3. Cách chọn hệ trục tọa độ – chọn véctơ + Chọn véctơ Đối với dạng bài tập này khi tìm véctơ chỉ phương, véctơ pháp tuyến của đường thẳng và mặt phẳng ta sẽ gặp trường hợp véctơ chứa tham số a là độ dài cạnh. Khi đó, để tiện cho việc tính toán ta chọn lại véctơ chỉ phương, véctơ pháp tuyến mất tham số a. [ads] + Chọn hệ trục tọa độ Phần quan trọng nhất của phương pháp này là cách chọn hệ trục tọa độ. Không có phương pháp tổng quát, có nhiều hệ trục tọa độ có thể được chọn, chúng ta chọn sao cho việc tìm tọa độ các điểm có nhiều số 0 càng tốt. • Hệ trục tọa độ nằm trên 3 đường thẳng đôi 1 vuông góc nhau. • Gốc tọa độ thường là chân đường cao của hình chóp, hình lăng trụ trùng với đỉnh của hình vuông, hình chữ nhật, tam giác vuông hoặc có thể là trung điểm của cạnh nào đó. 4. Các ví dụ
Hình học giải tích không gian - Đặng Thành Nam
Tài liệu gồm 42 trang gồm lý thuyết, hướng dẫn giải và bài tập tự luận chủ đề hình học giải tích không gian. + Kiến thức cần nhớ: Lý thuyết cơ bản và các công thức tính + Ví dụ mẫu: Có lời giải chi tiết + Bài tập tự rèn luyện: Có đáp số [ads] Trích dẫn tài liệu : + Trong không gian với hệ trục tọa độ Oxyz cho hai mặt phẳng (P1), (P2) có các phương trình tương ứng là 2x – y + 2z – 1 = 0 và 2x – y + 2z + 5 = 0 và điểm A (-1; 1; 1) nằm trong khoảng giữa hai mặt phẳng đó. Gọi (S) là mặt cầu bất kỳ qua A và tiếp xúc với cả hai mặt phẳng (P1) và (P2). Gọi I là tâm của mặt cầu (S). Chứng tỏ rằng I thuộc một đường tròn cố định. Xác định tọa độ tâm và tính bán kính của đường tròn đó. + Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng a. Gọi M, N lần lượt là trung điểm của BC và DD’. (i). Chứng minh rằng MN // (A’BD) (ii). Tính khoảng cách giữa BD và MN theo a + Viết phương trình mặt phẳng (Q) đi qua A(2, 4, 3) và song song với mặt phẳng (P): 2x – 3y + 6z + 19 = 0. Tính khoảng cách giữa hai mặt phẳng (P) và (Q). Hạ AH ⊥ (P). Xác định tọa độ điểm H.
Chuyên đề hình học giải tích không gian - Lưu Huy Thưởng
Tài liệu gồm 60 trang với phần lý thuyết, công thức, bài tập có đáp án và tuyển tập các bài hình học tọa độ không gian trong đề thi THPT, Đại học – Cao đẳng. Tài liệu do thầy Lưu Huy Thưởng biên soạn. BÀI 1: MỞ ĐẦU BÀI 2: PHƯƠNG TRÌNH MẶT CẦU BÀI 3: PHƯƠNG TRÌNH MẶT PHẲNG Vấn đề 1: Viết phương trình mặt phẳng Để lập phương trình mặt phẳng (α) ta cần xác định một điểm thuộc (α) và một VTPT của nó Vấn đề 2: Vị trí tương đối của hai mặt phẳng Vấn đề 3: Khoảng cách từ một điểm đến một mặt phẳng Khoảng cách giữa hai mặt phẳng song song.Hình chiếu của một điểm trên mặt phẳng. Điểm đối xứng của một điểm qua mặt phẳng Vấn đề 4: Góc giữa hai mặt phẳng BÀI 4: PHƯƠNG TRÌNH ĐƯỜNG THẲNG Vấn đề 1: Lập phương trình đường thẳng Để lập phương trình đường thẳng d ta cần xác định một điểm thuộc d và một VTCP của nó Vấn đề 2: Vị trí tương đối giữa hai đường thẳng Để xét VTTĐ giữa hai đường thẳng, ta có thể sử dụng một trong các phương pháp sau: + Phương pháp hình học: Dựa vào mối quan hệ giữa các VTCP và các điểm thuộc các đường thẳng + Phương pháp đại số: Dựa vào số nghiệm của hệ phương trình các đường thẳng Vấn đề 3: Vị trí tương đối giữa đường thẳng và mặt phẳng Để xét VTTĐ giữa đường thẳng và mặt phẳng, ta có thể sử dụng một trong các phương pháp sau: + Phương pháp hình học: Dựa vào mối quan hệ giữa VTCP của đường thẳng và VTPT của mặt phẳng + Phương pháp đại số: Dựa vào số nghiệm của hệ phương trình đường thẳng và mặt phẳng Vấn đề 5: Khoảng cách Vấn đề 6: Góc Vấn đề 7: Một số vấn đề khác [ads] CÁC DẠNG TOÁN PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN I. VIẾT PHƯƠNG TRÌNH MẶT PHẲNG + Dạng 1: Cơ bản + Dạng 2: Phương trình mặt phẳng liên quan tới mặt cầu + Dạng 3: Viết phương trình mặt phẳng liên quan đến khoảng cách + Dạng 4: Viết phương trình mặt phẳng liên quan đến góc + Dạng 5: Viết phương trình mặt phẳng liên quan đến tam giác II. VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG + Dạng 1: Viết phương trình đường thẳng bằng cách xác định vectơ chỉ phương + Dạng 2: Viết phương trình đường thẳng liên quan đến một đường thẳng khác + Dạng 3: Viết phương trình đường thẳng liên quan đến hai đường thẳng khác + Dạng 4: Viết phương trình đường thẳng liên quan đến khoảng cách + Dạng 5: Viết phương trình đường thẳng liên quan đến góc + Dạng 6: Viết phương trình đường thẳng liên quan đến tam giác III. VIẾT PHƯƠNG TRÌNH MẶT CẦU IV. TÌM ĐIỂM THOẢ ĐIỀU KIỆN CHO TRƯỚC + Dạng 1: Xác định điểm thuộc mặt phẳng + Dạng 2: Xác định điểm thuộc đường thẳng + Dạng 3: Xác định điểm thuộc mặt cầu + Dạng 4: Xác định điểm trong không gian + Dạng 5: Xác định điểm trong đa giác CÁC BÀI TOÁN LIÊN QUAN ĐẾN MIN – MAX