Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán căn bậc hai, căn bậc ba

Tài liệu gồm 54 trang, tóm tắt kiến thức trọng tâm và hướng dẫn phương pháp giải các dạng toán căn bậc hai, căn bậc ba, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 phần Đại số chương 1. Bài 1 . Căn bậc hai. Bài 2 . Căn thức bậc hai và hằng đẳng thức √A^2 = |A|. + Dạng 1. Tìm căn bậc hai số học của một số. + Dạng 2. So sánh các căn bậc hai số học. + Dạng 3. Giải phương trình, bất phương trình. + Dạng 4. Tìm điều kiện để √A có nghĩa. + Dạng 5. Rút gọn biểu thức dạng √A^2. Bài 3 . Liên hệ giữa phép nhân và phép khai phương. + Dạng 1. Khai phương một tích. + Dạng 2. Nhân các căn bậc hai. + Dạng 3. Rút gọn, tính giá trị của biểu thức. + Dạng 4. Biến đổi một biểu thức về dạng tích. + Dạng 5. Giải phương trình. + Dạng 6. Chứng minh bất đẳng thức. Bài 4 . Liên hệ giữa phép chia và phép khai phương. + Dạng 1. Khai phương một thương. + Dạng 2. Chia các căn bậc hai. + Dạng 3. Rút gọn, tính giá trị của biểu thức. + Dạng 4. Giải phương trình. Bài 5 . Bảng căn bậc hai. Bài 6 – Bài 7 . Biến đổi đơn giản biểu thức chứa căn thức bậc hai. + Dạng 1. Đưa thừa số ra ngoài dấu căn. + Dạng 2. Đưa thừa số vào trong dấu căn. + Dạng 3. Khử mẫu của biểu thức lấy căn. + Dạng 4. Trục căn thức ở mẫu. + Dạng 5. So sánh hai số. + Dạng 6. Rút gọn biểu thức. Bài 8 . Rút gọn biểu thức chứa căn thức bậc hai. + Dạng 1. Rút gọn biểu thức chỉ có cộng, trừ căn thức. + Dạng 2. Rút gọn biểu thức có chứa các phép cộng, trừ, nhân, chia căn thức dưới dạng phân thức đại số. + Dạng 3. Rút gọn rồi tính giá trị của biểu thức hoặc rút gọn rồi tìm giá trị của biểu thức để biểu thức có một giá trị nào đó. + Dạng 4. Rút gọn biểu thức rồi chứng minh biểu thức có một tính chất nào đó hoặc tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Dạng 5. Chứng minh đẳng thức. Bài 9 . Căn bậc ba. + Dạng 1. Tìm căn bậc ba của một số. + Dạng 2. So sánh. + Dạng 3. Thực hiện các phép tính. + Dạng 4. Giải phương trình.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương trình bậc nhất hai ẩn
Tài liệu gồm 19 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề phương trình bậc nhất hai ẩn, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 1. A. KIẾN THỨC TRỌNG TÂM 1. Phương trình bậc nhất hai ẩn. 2. Tập nghiệm của phương trình bậc nhất hai ẩn. B. CÁC DẠNG BÀI TẬP MINH HỌA Dạng 1. Xác định nghiệm của phương trình bậc nhất hai ẩn. Dạng 2. Biện luận và vẽ đồ thị của hàm số bậc nhất. Dạng 3. Tìm nghiệm nguyên của phương trình bậc nhất hai ẩn. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN Xem thêm : Chuyên đề hệ phương trình bậc nhất hai ẩn
Chuyên đề hàm số bậc nhất
Tài liệu gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hàm số bậc nhất, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 2. A. TÓM TẮT LÝ THUYẾT 1. Hàm số bậc nhất. Là hàm số được cho bởi công thức y = ax + b trong đó a, b là hai số đã cho và a khác 0. 2. Các tính chất của hàm số bậc nhất. Hàm số bậc nhất xác định với mọi giá trị của x thuộc R. Hàm số bậc nhất: Đồng biến trên R khi a > 0; Nghịch biến trên R khi a < 0. B. CÁC DẠNG BÀI MINH HỌA Dạng 1: Tính giá trị của hàm số tại một điểm. + Việc tính toán theo kiểu này sẽ giúp ta xác định được toạ độ của nhiều điểm thuộc đồ thị hàm số một cách nhanh chóng. Ngoài ra, phương pháp sử dụng kết hợp máy tính cầm tay (sử dụng Slove) sẽ giúp cải thiện thời gian một cách hiệu quả. + Tính giá trị của hàm số y = f(x) khi cho giá trị của ẩn x0 là ta thay giá trị của x0 vào biểu thức y = f(x) để tìm được y = f(x0). Dạng 2: Vẽ đồ thị hàm bậc nhất. Theo các bước vẽ đã học. Dạng 3: Nhận dạng hàm số bậc nhất. Dựa vào định nghĩa hàm số bậc nhất. Dạng 4: Xét tính đông biến và nghịch biến của hàm số bậc nhất. Xét hàm số bậc nhất y = ax + b với a, b là hằng số: Khi a > 0, hàm số đồng biến trên R; khi a < 0, hàm số nghịch biến trên R. Dạng 5. Toán thực tế. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN Dạng 1. Nhận biết về khái niệm hàm số. Dạng 2. Tính giá trị của hàm số, giá trị của biến số. Dạng 3. Tìm điều kiện xác định của hàm số. Dạng 4. Đồ thị hàm số. Xem thêm : + Chuyên đề hàm số bậc nhất và các bài toán liên quan + Tài liệu học tập Toán 9 chủ đề hàm số bậc nhất – Trần Quốc Nghĩa + 123 bài toán hàm số bậc nhất và đường thẳng – Lương Tuấn Đức
Chuyên đề căn bậc ba
Tài liệu gồm 19 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề căn bậc ba, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 9. A. KIẾN THỨC TRỌNG TÂM a) Định nghĩa căn bậc ba. b) Tính chất căn bậc ba. c) Các phép biến đổi căn bậc ba. Mở rộng: Căn bậc n: a) Định nghĩa căn bậc n. b) Tính chất của căn bậc n. B. CÁC DẠNG BÀI MINH HỌA I. Dạng toán cơ bản. II. Dạng bài nâng cao phát triển tư duy. C. TRẮC NGHIỆM RÈN PHẢN XẠ
Chuyên đề rút gọn biểu thức chứa căn thức bậc hai
Tài liệu gồm 44 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề rút gọn biểu thức chứa căn thức bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 8. A. KIẾN THỨC TRỌNG TÂM Để rút gọn biểu thức chứa căn bậc hai ta thường thực hiện các bước sau: + Bước 1: Tìm điều kiện xác định của biểu thức (nếu đề chưa cho điều kiện). Chú ý điều kiện căn thức, điều kiện mẫu và điều kiện phần chia. + Bước 2: Phân tích mẫu thành nhân tử, kết hợp phân tích tử bằng các phép biến đổi đơn giản. + Bước 3: Bỏ ngoặc, thu gọn các biểu thức một cách hợp lý. Kết hợp điều kiện bài toán để kết luận. B. CÁC DẠNG BÀI MINH HỌA I. CÁC DẠNG TOÁN Bài toán rút gọn tổng hợp thường có các bài toán phụ: tính giá trị biểu thức khi cho giá trị của ẩn; tìm điều kiện của biến để biểu thức lớn hơn (nhỏ hơn) một số nào đó; tìm giá trị của biến để biểu thức có giá trị nguyên; tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức … Do vậy, ta phải áp dụng các phương pháp tương ứng, thích hợp cho từng dạng toán. Dạng toán 1 . Rút gọn biểu thức. Dạng toán 2 . Rút gọn biểu thức – tính giá trị của biểu thức khi cho giá trị của ẩn. Các bước thực hiện: + Rút gọn, chú ý điều kiện của biểu thức. + Rút gọn giá trị của biến nếu cần. + Thay vào biểu thức rút gọn. Dạng toán 3 . Rút gọn biểu thức – tìm x để biểu thức rút gọn đạt giá trị nguyên. + Rút gọn biểu thức. + Lấy tử chia cho mẫu tách biểu thức thành tổng của một số nguyên và một biểu thức có tử là một số nguyên. + Trong biểu thức mới tạo thành, ta cho mẫu là các ước nguyên của tử để suy ra x. Dạng toán 4 . Rút gọn biểu thức – tìm x để biểu thức thỏa bằng hoặc lớn hơn (nhỏ hơn) một số cho trước. + Rút gọn. + Cho biểu thức rút gọn thỏa điều kiện ta được phương trình hoặc bất phương trình, chú ý điều kiện của ẩn trong bài toán. Dạng toán 5 . Rút gọn biểu thức – tìm x để biểu thức đạt giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN). + Rút gọn. + Biến đổi biểu thức về dạng: Số không âm + hằng số rồi suy ra GTNN; Hằng số – số không âm rồi suy ra GTLN; Sử dụng bất đẳng thức Cô-si. Dạng toán 6 . Nâng cao phát triển tư duy. II. TRẮC NGHIỆM RÈN PHẢN XẠ