Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề ôn thi tuyển sinh vào lớp 10 môn Toán năm học 2023 - 2024

Tài liệu gồm 82 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, tuyển tập 15 đề ôn thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024; các đề thi hình thức 100% tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết. Trích dẫn Bộ đề ôn thi tuyển sinh vào lớp 10 môn Toán năm học 2023 – 2024 : + Một đoàn khách du lịch gồm 40 người dự định tham quan đỉnh núi Bả đen, nóc nhà Đông Nam Bộ bằng cáp treo khứ hồi (gồm lượt lên và lượt xuống). Nhưng khi tới nơi có 5 bạn trẻ muốn khám phá bằng đường bộ khi leo lên còn lúc xuống sẽ đi cáp treo trải nghiệm nên 5 bạn mua vé lượt xuống, do đó đoàn đã chi ra 9450000 đồng để mua vé. Hỏi giá cáp treo khứ hồi và giá vé 1 lượt là bao nhiêu? Biết rằng giá vé 1 lượt rẻ hơn vé khứ hồi là 110000 đồng. + Cho Cho tam giác ABC vuông tại A ngoại tiếp đường tròn O. Gọi D E F lần lượt là các tiếp điểm của O với các cạnh AB AC và BC. Đường thẳng BO cắt đường thẳng EF tại I. Tính BIF. + Cho hình chữ nhật ABCD. Gọi M N lần lượt là trung điểm cảu các cạnh BC và CD. Gọi E là giao điểm của BN với AM và F là giao điểm của BN với DM; DM cắt AN tại K. Chứng minh điểm A nằm trên đường tròn ngoại tiếp tam giác EFK.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2021 - 2022 sở GDĐT Tiền Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2021 – 2022 sở GD&ĐT Tiền Giang; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2021 – 2022 sở GD&ĐT Tiền Giang : + Cho tam giác ABC vuông tại A (AC < AB) có đường cao AH. Gọi D là điểm nằm trên đoạn thẳng AH (D khác A và H). Đường thẳng BD cắt đường tròn tâm C bán kính CA tại E và F (F nằm giữa B và D). Qua F vẽ đường thẳng song song với AE cắt hai đường thẳng AB và AH lần lượt tại M và N. a) Chứng minh BH.BC = BE.BF. b) Chứng minh HD là tia phân giác của góc EHF. c) Chứng minh F là trung điểm MN. + Trong mặt phẳng tọa độ Oxy, cho parabol 2 Pyx và đường thẳng dy x 2. Gọi A, B là hai giao điểm của đường thẳng (d) với parabol (P). Tìm tọa độ điểm M nằm trên trục hoành sao cho chu vi tam giác MAB nhỏ nhất. + Cho m, n là các số nguyên dương sao cho 2 2 mnm chia hết cho mn. Chứng minh rằng m là số chính phương.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 trường THPT chuyên Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên Toán – Tin) năm học 2021 – 2022 trường THPT chuyên Thái Bình, tỉnh Thái Bình; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 trường THPT chuyên Thái Bình : + Cho tam giác ABC nhọn AB AC nội tiếp trong đường tròn O có các đường cao BE CF cắt nhau tại H. Gọi S là giao điểm của các đường thẳng BC và EF, gọi M là giao điểm khác A của SA và đường tròn (O). a. Chứng minh rằng tứ giác AEHF nội tiếp và HM vuông góc với SA. b. Gọi I là trung điểm của BC. Chứng minh rằng SH vuông góc với AI. c. Gọi T là điểm nằm trên đoạn thằng HC sao cho AT vuông góc với BT. Chứng minh rằng hai đường tròn ngoại tiếp của các tam giác SMT và CET tiếp xúc với nhau. + Giả sử n là số tự nhiên thỏa mãn điều kiện n n 1 7 không chia hết cho 7. Chứng minh rằng 3 4 5 1 n n không là số chính phương. + Cho a b c là các số thực dương thỏa mãn 2 2 2 a b c abc 3. Tìm giá trị lớn nhất của biểu thức 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 a b c T a b c b c a c a b.
Đề tuyển sinh lớp 10 môn Toán (hệ chuyên) năm 2021 - 2022 sở GDĐT Quảng Ngãi
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (hệ chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Ngãi; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 04 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (hệ chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Ngãi : + Cho đường tròn tâm O, bán kính R = 4cm và hai điểm B, C cố định trên (O), BC không là đường kính. Điểm A thay đổi trên (O) sao cho tam giác ABC nhọn. Gọi D, E, F lần lượt là chân các đường cao kẻ từ A, B, C của tam giác ABC. a) Chứng minh 𝐵𝐴𝐷 = 𝐶𝐴𝑂. b) Gọi M là điểm đối xứng của A qua BC, N là điểm đối xứng của B qua AC. Chứng minh rằng: CD.CN = CE.CM. c) Trong trường hợp ba điểm C, M, N thẳng hàng, tính độ dài đoạn thẳng AB. d) Gọi I là trung điểm của BC. Đường thẳng AI cắt EF tại K. Gọi H là hình chiếu vuông góc của K trên BC. CHứng minh rằng đường thẳng AH luôn đi qua một điểm cố định khi A thay đổi. + Cho tập hợp S gồm n số nguyên dương đôi một khác nhau (n >= 3) thỏa mãn tính chất: tổng của 3 phần tử bất kì trong S đều là số nguyên tố. Tìm giá trị lớn nhất có thể của n. + Cho hàm số y m x 2 2 (m là tham số) có đồ thị là đường thẳng (d). a) Tìm điều kiện của m để hàm số đồng biến trên ℝ. b) Tìm giá trị của m để khoảng cách từ gốc tọa độ O đến (d) bằng 1.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 – 2022 sở GD&ĐT Quảng Nam; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 03 – 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 – 2022 sở GD&ĐT Quảng Nam : + Cho parabol (P): 2 y x và đường thẳng (d) y m x m 2 2 (m là tham số). Chứng minh rằng (d) luôn cắt (P) tại hai điểm A, B sao cho 1 1 2 M là trung điểm của đoạn thẳng AB, hai điểm H, K lần lượt là hình chiếu vuông góc của A, B trên trục hoành. Tính độ dài đoạn thẳng KH. + Cho hình vuông ABCD tâm O, điểm E nằm trên đoạn thẳng OB (E khác O, B), H là hình chiếu vuông góc của C trên đường thẳng AE. Gọi F là giao điểm của AC và DH. a) Chứng minh HD là tia phân giác của góc AHC. b) Chứng minh diện tích hình vuông ABCD bằng hai lần diện tích tứ giác AEFD. + Cho tam giác nhọn ABC (AB < AC). Đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F, E. Gọi H là giao điểm của BE và CF, đường thẳng AH cắt BC tại D. a) Chứng minh tứ giác ODFE nội tiếp đường tròn. b) Gọi K là giao điểm của AH và EF, I là trung điểm của AH. Đường thẳng CI cắt đường tròn (O) tại M (M khác C). Chứng minh CI vuông góc với KM.