Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCĐ Toán 12 lần 1 năm 2019 - 2020 trường Ngô Gia Tự - Vĩnh Phúc

Ngày … tháng 11 năm 2019, trường THPT Ngô Gia Tự, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chuyên đề môn Toán dành cho học sinh khối 12 lần thứ nhất năm học 2019 – 2020, nhằm kiểm tra kiến thức Toán 12 định kỳ trong giai đoạn giữa học kỳ 1, đồng thời ôn luyện để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2020. Đề thi KSCĐ Toán 12 lần 1 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc có mã đề 137, đề có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi nhằm kiểm tra kiến thức Toán 11 và Toán 12 đã được học, đề thi có đáp án. Trích dẫn đề thi KSCĐ Toán 12 lần 1 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc : + Bạn An thả quả bóng từ độ cao 6m so với mặt đất xuống theo phương thẳng đứng sau đó bóng nảy lên rồi lại rơi xuống cứ như vậy cho đến khi bóng dừng lại trên mặt đất. Tính quãng đường mà bóng đã di chuyển biết rằng sau mỗi lần chạm đất bóng lại nảy lên đến độ cao bằng 3/4 độ cao của lần ngay trước đó. + Vòng loại World Cup 2022 khu vực Châu Á tại bảng G Việt Nam cùng bảng với các đội Thái Lan, Malaysia, Indonesia và UAE thi đấu theo thể thức mỗi đội gặp nhau hai lần. Hỏi kết thúc vòng đấu bảng ban tổ chức phải tổ chức bao nhiêu trận đấu ở bảng G? [ads] + Cho tứ diện đều ABCD có cạnh bằng 12. Gọi M, N, P lần lượt thỏa mãn các hệ thức vectơ MA + MB = 0, NB + NC = 0, PC + 2PD = 0. Mặt phẳng (MNP) chia tứ diện thành hai phần. Tính thể tích khối đa diện chứa đỉnh A. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, M nằm giữa A và O, mặt phẳng (α) qua M song song với SA và BD. Thiết diện của mặt phẳng (α) với hình chóp là: A. Một hình thang. B. Một hình bình hành. C. Một ngũ giác. D. Một tam giác. + Ba bạn Đoàn, Thanh, Niên mỗi bạn viết lên bảng một số tự nhiên nhỏ hơn 21. Tính xác suất để tổng ba số được viết lên bảng bằng 21.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 12 lần 1 năm 2020 - 2021 trường Thiệu Hóa - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 PDF đề thi + đáp án + lời giải chi tiết đề KSCL Toán 12 lần 1 năm học 2020 – 2021 trường THPT Thiệu Hóa – Thanh Hóa; nhằm giúp các em tham khảo, chuẩn bị cho kỳ thi tốt nghiệp THPT 2021 môn Toán. Trích dẫn đề KSCL Toán 12 lần 1 năm 2020 – 2021 trường Thiệu Hóa – Thanh Hóa : + Cho hình trụ có bán kính bằng 5. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 1, thiết diện thu được là một hình vuông. Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng? + Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a góc giữa SC với mặt phẳng đáy bằng 60 độ, SA vuông góc với mặt phẳng đáy và SB = 2a. Thể tích của khối chóp đã cho bằng? + Cắt hình nón có chiều cao 2 3 bởi một mặt phẳng đi qua đỉnh và tâm của đáy ta được thiết diện là tam giác đều, diện tích của thiết diện bằng?
Đề KSCL lần 3 Toán 12 năm 2020 - 2021 trường THPT Yên Lạc - Vĩnh Phúc
Thứ Hai ngày 01 tháng 02 năm 2021, trường THPT Yên Lạc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán đối với học sinh lớp 12 năm học 2020 – 2021 lần thứ ba, kỳ thi nhằm rèn luyện kiến thức thường xuyên để chuẩn bị cho kỳ thi tốt nghiệp THPT 2021. Đề KSCL lần 3 Toán 12 năm 2020 – 2021 trường THPT Yên Lạc – Vĩnh Phúc được biên soạn theo dạng đề trắc nghiệm, đề gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 901. Trích dẫn đề KSCL lần 3 Toán 12 năm 2020 – 2021 trường THPT Yên Lạc – Vĩnh Phúc : + Lớp 12A1 có 40 học sinh gồm 25 học sinh nam và 15 học sinh nữ. Có bao nhiêu cách chọn ra 2 học sinh của lớp 12A1 sao cho trong 2 học sinh chọn ra có 1 học sinh nam và 1 học sinh nữ? + Cho hình trụ có chiều cao bằng 5a, cắt hình trụ bởi mặt phẳng song song với trục và cách trục một khoảng bằng 3a được thiết diện có diện tích bằng 20a2. Thể tích của khối trụ bằng? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AD, SC. Điểm I là giao điểm của BM và AC. Tính tỷ số thể tích của hai khối chóp ANIB và S.ABCD.
Đề KSCL Toán 12 lần 1 năm 2020 - 2021 trường Yên Định 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 lần 1 năm học 2020 – 2021 trường THPT Yên Định 1, tỉnh Thanh Hóa; đề thi mã đề 007 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề KSCL Toán 12 lần 1 năm 2020 – 2021 trường Yên Định 1 – Thanh Hóa : + Cho hàm số y = x3 – 2(m + 1)x2 + (5m + 1)x – 2m – 2 có đồ thị (Cm) với m là tham số. Tập S là tập các giá trị nguyên của m với m thuộc (-2021;2021) để (Cm) cắt trục hoành tại ba điểm phân biệt A(2;0), B, C sao cho trong hai điểm B, C có một điểm nằm trong và một điểm nằm ngoài đường tròn có phương trình x2 + y2 = 1. Tính số phần tử của S? + Một người gửi 100 triệu đồng vào một ngân hàng với lãi suất 0,4%/tháng. Biết rằng nếu không rút tiền khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau đúng 6 tháng, người đó được lĩnh số tiền (cả vốn ban đầu và lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi? A. 102.424.000 đồng. B. 102.423.000 đồng. C. 102.016.000 đồng. D. 102.017.000 đồng. + Gọi S là tập hợp các số tự nhiên có 6 chữ số được lập từ tập hợp A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}. Chọn ngẫu nhiên một số từ tập hợp S. Tính xác suất để chọn được số tự nhiên có tích các chữ số bằng 1400.
Đề KSCL Toán thi tốt nghiệp THPT 2021 lần 1 trường chuyên Lam Sơn - Thanh Hóa
Sáng Chủ Nhật ngày 17 tháng 01 năm 2021, trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán lần thứ nhất, hướng đến kỳ thi tốt nghiệp Trung học Phổ thông Quốc gia môn Toán năm học 2020 – 2021. Đề KSCL Toán thi tốt nghiệp THPT 2021 lần 1 trường chuyên Lam Sơn – Thanh Hóa mã đề 001 gồm có 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề KSCL Toán thi tốt nghiệp THPT 2021 lần 1 trường chuyên Lam Sơn – Thanh Hóa : + Một người gửi tiền vào ngân hàng với lãi suất không thay đổi là 6% trên năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu (người ta gọi đó là lãi kép). Người đó định gửi tiền trong vòng 3 năm, sau đó rút 500 triệu đồng. Hỏi số tiền ít nhất người đó phải gửi vào ngân hàng (kết quả làm tròn đến hàng triệu) là bao nhiêu triệu đồng? + Cho một hộp đứng ABCD.A’B’C’D’. Đáy ABCD là hình thoi cạnh bằng a và BAD = 60°. Một mặt phẳng tạo với mặt đáy một góc 60° và cắt tất cả các cạnh bên của hình hộp. Tính diện tích thiết diện tạo thành. + Cho tứ diện ABCD có ABC và ABD là các tam giác đều cạnh bằng a không đổi. Độ dài CD thay đổi. Tính giá trị lớn nhất đạt được của thể tích khối tứ diện ABCD.