Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 lần 2 năm 2019 - 2020 cụm trường THPT Thanh Chương - Nghệ An

Nhằm chuẩn bị cho kỳ thi chọn học sinh giỏi môn Toán 11 cấp tỉnh do sở Giáo dục và Đào tạo Nghệ An tổ chức, vừa qua, cụm các trường THPT trên địa bàn huyện Thanh Chương, tỉnh Nghệ An đã tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 11 năm học 2019 – 2020 lần thứ hai. Đề thi HSG Toán 11 lần 2 năm 2019 – 2020 cụm trường THPT Thanh Chương – Nghệ An gồm có 06 bài toán tự luận, đề thi có 01 trang, học sinh làm bài trong 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán 11 lần 2 năm 2019 – 2020 cụm trường THPT Thanh Chương – Nghệ An : + Trong hệ tọa độ Oxy, cho tam giác ABC vuông tại A(2;5) và H là hình chiếu vuông góc của A lên cạnh BC. Gọi I, J(2;-1) và K(6;1) lần lượt là tâm đường nội tiếp của tam giác ABC, ABH, ACH. Chứng minh I là trực tâm của tam giác AJK và tìm tọa độ các đỉnh B, C. [ads] + Cho tứ diện đều ABCD có trọng tâm G, cạnh AB = a; O là tâm của tam giác BCD và M là điểm bất kỳ thuộc mặt phẳng (BCD). Gọi H, K, L lần lượt là hình chiếu vuông góc của M lên các mặt phẳng (ACD), (ABD), (ABC). Mặt phẳng (P) bất kỳ đi qua trọng tâm G, cắt các cạnh AB, AC, AD lần lượt tại B’, C’,  D’. Chứng minh AB/AB’ + AC/AC’ + AD/AD’ = 4. Chứng minh đường thẳng GM luôn đi qua trọng tâm E của tam giác HKL. + Cho đa giác đều có 60 đỉnh. Hỏi có bao nhiêu tam giác có 3 cạnh là đường chéo của đa giác đó?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Hà Nam
Nội dung Đề học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Hà Nam Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán lớp 11 THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán lớp 11 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Hà Nam : + Cho đa giác đều có 2n đỉnh (n ≥ 2 và n thuộc N). Biết rằng, từ 2n đỉnh của đa giác đều đã cho ta lập được 2520 tam giác vuông. Tìm số cạnh của đa giác đều đã cho. + Ba bạn A, B, C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1;22]. Tính xác suất để ba số viết ra có tổng chia hết cho 3. + Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M là trung điểm của BC, điểm N thay đổi thuộc cạnh AC. Biết mặt phẳng (A’BN) luôn cắt AC’ và AM lần lượt tại hai điểm P và Q. Xác định vị trí của N để diện tích của tam giác APQ bằng 2/9 lần diện tích của tam giác AMC’.
Đề học sinh giỏi lớp 11 môn Toán năm 2022 2023 trường THPT Phùng Khắc Khoan Hà Nội
Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2022 2023 trường THPT Phùng Khắc Khoan Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa cấp trường môn Toán lớp 11 năm học 2022 – 2023 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề học sinh giỏi Toán lớp 11 năm 2022 – 2023 trường THPT Phùng Khắc Khoan – Hà Nội : + Tìm phương trình parabol P 2 y ax bx c biết rằng P đi qua ba điểm A B C như hình vẽ. + Trong mọi tam giác ABC, gọi a, b, c lần lượt là độ dài các cạnh BC, AC, AB và S là diện tích tam giác ABC. Chứng minh rằng: 2 2 2 cot cot cot 4 a b c A B C S. + Cho phương trình 2 2 4 4 5 4 2 1 x x x x m. Tìm tất cả các giá trị của tham số m để phương trình có bốn nghiệm thực phân biệt.
Đề học sinh giỏi lớp 11 môn Toán năm 2022 2023 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2022 2023 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2022 – 2023 trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh; đề thi gồm 01 trang với 09 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi Toán lớp 11 năm 2022 – 2023 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong một bài kiểm tra trắc nghiệm Tiếng Anh có 50 câu. Mỗi câu có 4 phương án trả lời A, B, C, D, trong đó chỉ có một phương án đúng. Mỗi câu trả lời đúng được cộng 0, 2 điểm và mỗi câu trả lời sai bị trừ 0,1 điểm. Bạn Hoa học rất kém môn Tiếng Anh nên chọn ngẫu nhiên cả 5 0 câu trả lời. Tính xác suất để bạn Hoa được 4 điểm bài kiểm tra Tiếng Anh đó. + Cho khai triển 2 01 2 1 2 … n n n x a ax ax ax trong đó n và các hệ số thỏa mãn hệ thức 1 0 … 4096 2 2 n n a a a. Tìm hệ số lớn nhất trong khai triển trên? + Cho hình chóp S ABCD đáy là hình bình hành tâm O, M là một điểm di động trên cạnh SC. a. Khi M là trung điểm của SC chứng minh rằng MO SAB. b. Khi M thay đổi vị trí trên cạnh SC mặt phẳng P qua AM và song song với BD cắt SB SD lần lượt tại H và K. Chứng minh rằng SB SD SC SH SK SM có giá trị không đổi. File WORD (dành cho quý thầy, cô):
Đề chọn đội tuyển lớp 11 môn Toán năm 2022 2023 trường THPT Chu Văn An Hà Nội
Nội dung Đề chọn đội tuyển lớp 11 môn Toán năm 2022 2023 trường THPT Chu Văn An Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề chọn đội tuyển học sinh giỏi môn Toán lớp 11 năm học 2022 – 2023 trường THPT Chu Văn An, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề chọn đội tuyển Toán lớp 11 năm 2022 – 2023 trường THPT Chu Văn An – Hà Nội : + Cho hàm số y = x3 + 2mx2 − 3x (1) và đường thẳng d: y – mx + 2 = 0 (với m là tham số). Tìm m để đường thẳng d và đồ thị hàm số (1) cắt nhau tại ba điểm phân biệt A, B, C sao cho diện tích tam giác OBC bằng 5 (với A là điểm có hoành độ không đổi và O là gốc toạ độ). + Cho tứ diện SABC có AB = AC = a, BC = a/2, SA = a3 (a > 0). Biết góc SAB = 30 và góc SAC = 30. Tính thể tích khối tứ diện theo a. + Chứng minh rằng nếu một tứ diện có độ dài một cạnh lớn hơn 1, độ dài các cạnh còn lại đều không lớn hơn 1 thì thể tích của khối tứ diện đó không lớn hơn 1/8.