Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 năm 2020 - 2021 môn Toán trường Gang Thép - Thái Nguyên

THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán trường THPT Gang Thép, tỉnh Thái Nguyên; đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào 10 năm 2020 – 2021 môn Toán trường Gang Thép – Thái Nguyên : + Trên một vùng biển được xem như bằng phẳng và không có chướng ngại vật, vào lúc 6 giờ có một tàu cá đi thẳng qua tọa độ X theo hướng Từ Nam đến Bắc với vận tốc không đổi. Đến 7 giờ cùng ngày một tàu du lịch cũng đi thẳng qua tọa độ X theo hướng từ Đông sang Tây với vận tốc lớn hơn vận tốc tàu cá 12 km/h. Đến 8 giờ cùng ngày, khoảng cách giữa hai tàu là 60 km. Tính vận tốc của mỗi tàu. + Cho hai đường tròn (O1, R1) và (O2, R2) tiếp xúc ngoài tại E. Vẽ tiếp tuyến chung ngoài MN của hai đường tròn (M∈(O1); N∈(O2)), vẽ tiếp tuyến chung trong của hai đường tròn tại E cắt MN tại A. a) Chứng minh: tứ giác MAEO1 và tứ giác NAEO2 là các tứ giác nội tiếp. b) Tính MN theo R1, R2. [ads] + Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E. H là giao điểm của BD và CE. K là giao điểm của DE và AH. F là giao điểm của AH và BC. M là trung điểm của AH. Chứng minh rằng: MA2 = MK.MF.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi gồm 20 câu trắc nghiệm (03 điểm) và 05 câu tự luận (07 điểm), thời gian làm bài 120 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào thứ Bảy ngày 04 tháng 06 năm 2022.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi gồm 04 câu trắc nghiệm (02 điểm) và 06 câu tự luận (08 điểm), thời gian làm bài 120 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Cho Parabol (P): y = x2 và đường thẳng d: y = -2x + m – 1 (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt Parabol (P) tại hai điểm phân biệt A(x1;y1) và B(x2;y2) sao cho. + Một phân xưởng theo kế hoạch phải may 900 bộ quần áo trong một thời gian quy định, mỗi ngày phân xưởng may được số bộ quần áo là như nhau. Khi thực hiện, do cải tiến kỹ thuật nên mỗi ngày phân xưởng may thêm được 10 bộ quần áo và hoàn thành kế hoạch trước 3 ngày. Hỏi theo kế hoạch, mỗi ngày phân xưởng may được bao nhiêu bộ quần áo? + Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) và AB < AC. Ba đường cao AD, BE, CF của tam giác ABC (D, E, F là chân các đường cao) đồng quy tại điểm H. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên đường thẳng AK. a) Chứng minh rằng tứ giác BCEF nội tiếp đường tròn. b) Chứng minh rằng tam giác ABD đồng dạng với tam giác AKC và MD song song với BK. c) Giả sử hai đỉnh B, C cố định trên đường tròn (O; R) và đỉnh A di động trên cung lớn BC của đường tròn (O; R). Chứng minh rằng đường thẳng MF luôn đi qua một điểm cố định và tìm vị trí của đỉnh A sao cho diện tích tam giác AEH lớn nhất.
Đề tuyển sinh vào lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kì thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Khánh Hòa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – m + 3 (m là tham số) và parapol (P): y = x2. a) Vẽ đồ thị (P). b) Tìm các số nguyên m để (d) và (P) cắt nhau tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn: x12(x2 + 2) + x22(x1 + 2) =< 10. + Nhằm đáp ứng nhu cầu sử dụng khẩu trang chống dịch COVID-19, theo kế hoạch, hai tổ sản xuất của một nhà máy dự định làm 720000 khẩu trang. Do áp dụng kĩ thuật mới nên tổ I đã sản xuất vượt kế hoạch 15% và tổ II vượt kế hoạch 12%, vì vậy họ đã làm được 819000 khẩu trang. Hỏi theo kế hoạch số khẩu trang của mỗi tổ sản xuất là bao nhiêu? + Cho nửa đường tròn tâm O bán kính 3cm có đường kính AB. Gọi C là điểm thuộc nửa đường tròn sao cho AC > BC. Vẽ OD vuông góc với AC (D thuộc AC) và CE vuông góc với AB (E thuộc AB). Tiếp tuyến tại B của nửa đường tròn cắt tia AC tại F. a) Chứng minh: ODCE là tứ giác nội tiếp. b) Chứng minh: OCD = CBF. c) Cho BAC = 30°. Tính diện tích phần tam giác ABF nằm bên ngoài đường tròn (O;3cm). d) Khi C di động trên nửa đường tròn (O;3cm). Tìm vị trí điểm C sao cho chu vi tam giác OCE lớn nhất.
Đề tuyển sinh vào lớp 10 chuyên môn Toán năm 2022 - 2023 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho phương trình x2 – 2mx + m – 2 = 0 (m là tham số). a) Tìm tất cả các giá trị m để phương trình có hai nghiệm phân biệt dương. b) Gọi x1 và x2 là các nghiệm của phương trình. Tìm m để biểu thức M đạt giá trị nhỏ nhất. + Chứng minh rằng: A = a7 – a chia hết cho 7 với mọi a thuộc Z. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), M là trung điểm BC; BE và CF là các đường cao (E và F là chân các đường cao). Các tiếp tuyến với đường tròn (O) tại B và C cắt nhau tại S. Gọi N và P lần lượt là giao điểm của BS với EF và AS với (O) (P khác A) . Chứng minh rằng: a) MN vuông góc BF. b) AB.CP = AC.BP. c) CAM = BAP.