Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Yên Định Thanh Hóa

Nội dung Đề học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Yên Định Thanh Hóa Bản PDF - Nội dung bài viết Đề Học Sinh Giỏi Toán Lớp 7 Năm 2020-2021 Phòng GD&ĐT Yên Định Thanh Hóa Đề Học Sinh Giỏi Toán Lớp 7 Năm 2020-2021 Phòng GD&ĐT Yên Định Thanh Hóa Đề học sinh giỏi Toán lớp 7 năm 2020-2021 do Phòng Giáo dục và Đào tạo Yên Định tổ chức bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 120 phút, kỳ thi diễn ra vào ngày 02 tháng 02 năm 2021. Đề thi cung cấp lời giải chi tiết và hướng dẫn chấm điểm. Trích từ đề học sinh giỏi Toán lớp 7 năm 2020-2021 Phòng GD&ĐT Yên Định-Thanh Hóa: 1. Tìm một số chính phương có 4 chữ số biết rằng 2 chữ số đầu giống nhau, 2 chữ số cuối giống nhau. 2. Tìm các số nguyên dương n và các số nguyên tố p sao cho n n = p. 3. Cho ABC có góc A nhỏ hơn 90 độ. Trên nửa mặt phẳng bờ AB không chứa điểm C, vẽ đoạn thẳng AM sao cho AM vuông góc với AB và AM = AB. Trên nửa mặt phẳng bờ AC không chứa điểm B, vẽ đoạn thẳng AN sao cho AN vuông góc với AC và AN = AC. a) Chứng minh rằng: ∠AMC = ∠ABN. b) Chứng minh: BN || CM. c) Kẻ AH || BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN. Đề thi được thiết kế để thử thách học sinh lớp 7 với các bài toán đa dạng và logic. Thách thức không chỉ đến từ việc tìm ra đáp án đúng mà còn từ việc phải chứng minh các bước giải thật chặt chẽ. Đây là cơ hội để các em thể hiện kiến thức và khả năng tư duy logic của mình trong môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề HSG cấp cụm Toán 7 năm 2022 - 2023 trường THCS Cành Nàng - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng cấp cụm môn Toán 7 năm học 2022 – 2023 trường THCS thị trấn Cành Nàng, huyện Bá Thước, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 29 tháng 01 năm 2023. Trích dẫn Đề HSG cấp cụm Toán 7 năm 2022 – 2023 trường THCS Cành Nàng – Thanh Hóa : + Tìm tất cả các số tự nhiên a, b sao cho: 2a + 7 = |b – 5| + b – 5. + Tìm các giá trị nguyên của x để biểu thức C 22 3x 4 x có giá trị lớn nhất. + Cho ∆ABC có góc A nhỏ hơn 900. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ∆ABM và ∆ACN. a) Chứng minh rằng: MC = BN. b) Chứng minh rằng: BN ⊥ CM. c) Kẻ AH ⊥ BC (H ∈ BC). Chứng minh AH đi qua trung điểm của MN.
Đề khảo sát HSG Toán 7 năm 2022 - 2023 trường THCS Cành Nàng - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chọn đội tuyển học sinh giỏi môn Toán 7 năm học 2022 – 2023 trường THCS thị trấn Cành Nàng, huyện Bá Thước, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát HSG Toán 7 năm 2022 – 2023 trường THCS Cành Nàng – Thanh Hóa : + Số A được chia thành 3 số tỉ lệ theo 231 546. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH BC (H BC). Biết HBE = 50o; MEB = 25o. Tính số đo HEM và BME. + Chứng minh rằng nếu 2n + 1 và 3n + 1 (với n N) đều là các số chính phương thì n chia hết cho 40.
Đề Olympic Toán 7 đợt 1 năm 2022 - 2023 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 đợt 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Trích dẫn Đề Olympic Toán 7 đợt 1 năm 2022 – 2023 phòng GD&ĐT Ứng Hòa – Hà Nội : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5 : 6 : 7 nhưng sau đó chia theo tỉ lệ 4 : 5 : 6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho ∆ABC có AB AC vẽ đường phân giác AD. Trên cạnh AC lấy điểm E sao cho AE AB. a) Chứng minh: BD DE. b) Gọi K là giao điểm của AB và ED. Chứng minh rằng: DBK DEC. c) ∆ABC cần có thêm điều kiện gì để D cách đều ba cạnh của ∆AKC. + Ông Nam gửi ngân hàng 100 triệu, lãi suất 8%/năm. Hỏi sau 36 tháng số tiền cả gốc và lãi thu được là bao nhiêu? (Biết nếu tiền lãi không rút ra thì tiền lãi đó sẽ nhập vào vốn để tính lãi cho các kì hạn tiếp theo).
Đề học sinh giỏi huyện Toán 7 năm 2022 - 2023 phòng GDĐT Yên Bình - Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Bình, tỉnh Yên Bái (đề chính thức và đề dự bị); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 28 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Yên Bình – Yên Bái : + Cho p là số nguyên tố lớn hơn 3. Biết p + 2 cũng là số nguyên tố. Chứng tỏ rằng p + 1 chia hết cho 6. + Trong hình bên, cho Ax // By. Biết A = 35o và O = 80o. Tính góc B. + Một ngôi nhà có các kích thước như hình vẽ. a) Tính thể tích phần không gian được giới hạn bởi ngôi nhà. b) Hỏi phải dùng bao nhiêu lít sơn để sơn phủ được mặt ngoài ngôi nhà? Biết rằng 1 lít sơn bao phủ được 8 m2 tường (không sơn cửa) và tổng diện tích các cửa là 25 m2.